Browsing by Subject "Life cycle assessment"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Kyttä, Venla Vilhelmiina; Helenius, Juha; Tuomisto, Hanna (2021)
    The globally growing demand to produce more food with fewer inputs, less energy, and lower greenhouse gas (GHG) emissions challenges current agricultural practices. Recycled fertilizers made of various side streams and types of biomass have been developed mainly to improve nutrient recycling in food systems. However, the knowledge of the impacts of different recycled fertilizers on GHG emissions and energy use is lacking. There is also a need for developing environmental assessment methods for quantifying the impacts of recycling processes, particularly in terms of choosing reasonable methods for co-product allocation. The aims of this study were to address the above mentioned research gaps by i) assessing energy use and GHG emissions of various recycled fertilizers, ii) comparing the recycled fertilizers with mineral fertilizers, and iii) comparing the impacts of using different co-product allocation methods for the recycled fertilizers. Attributional Life Cycle Assessment (LCA) was used for estimating energy use and GHG emissions of recycled fertilizers, including ammonium sulfate, biogas digestate, and meat and bone meal, using kg of nitrogen in the fertilizers as a functional unit. In addition, the energy use and GHG emissions of oat production when using the recycled and mineral fertilizers were quantified. The data were obtained from field experiments, LCA databases, published literature, and fertilizer companies. The life-cycle energy consumption and GHG emissions of recycled fertilizers were found to be lower than that of mineral fertilizer, but also differences between recycled fertilizer products were notable. The biggest differences between fertilizers occurred in manufacturing and transportation. However, this conclusion is highly sensitive to several decisions, such as data sources and LCA methods used. Handling the raw materials of recycled fertilizers as by-products instead of residues adds burdens from primary production to fertilizers. Also handling the materials as waste increases the impacts due to burdens from the recycling process. Since the raw materials of fertilizers have only little economic value, applying economic allocation results to significantly lower impacts than mass allocation. Consequential LCA studies would be needed to improve the understanding of the wider impacts of recycled fertilizers, e.g. considering the benefits of avoided waste management processes. (C) 2020 Elsevier Ltd. All rights reserved.
  • Hurmekoski, Elias; Kunttu, Janni; Heinonen, Tero; Pukkala, Timo; Peltola, Heli (2023)
    Wood use is expanding to new markets, driven by the need to substitute fossil-intensive products and energy. Wood products can contribute to climate change mitigation, if they have a lower fossil footprint than alternative products serving the same function. However, the climate change mitigation potential is contingent on the net fossil and biogenic emissions over time, as well as the realism of the counterfactual scenario and market assumptions. This study aims to improve the consistency of assessing the avoided fossil emissions attributed to changes in wood use, and to estimate the additional mitigation potential of increased wood use in construction and textile markets based on wood harvested in Finland. The results show that, compared to baseline, an increase in the market share of wood leads to an increase in atmospheric CO2 concentration by 2050. Thus, the substitution impacts of wood use are not large enough to compensate for the reduction in forest carbon sinks in the short and medium term. This outcome is further aggravated, considering the decarbonization of the energy sector driven by the Paris Agreement, which lowers the fossil emissions of competing sectors more than those of the forest sector. The expected decarbonization is a highly desirable trend, but it will further lengthen the carbon parity period associated with an increase in wood harvest. This creates a strong motive to pursue shifts in wood uses instead of merely expanding all wood uses.
  • Lahtinen, Laura; Mattila, Tuomas; Myllyviita, Tanja; Seppala, Jyri; Vasander, Harri (2022)
    Drained peatlands are a large emission source and a shift to paludiculture (rewetting and cultivation of wettolerant plants) is emerging as a potential emission reduction measure. Paludiculture can potentially results in emission savings from direct emissions, product substitution and carbon storage, but the whole life cycle climate impacts are rarely studied. In this study, we evaluated two paludiculture product systems (cattail (Typha) construction board and common reed (Phragmites) horticultural vermicompost) with cradle-to-grave life cycle assessment (LCA) applied global sensitivity analysis to identify, which parts of the product system would need more research and product development to ensure net emission savings. Based on the results, both product systems result in much lower emissions than current agricultural land use and may be net greenhouse gas sinks (average - 6.0 tCO2eq ha-1 for cattail board; -3.0 tCO2eq ha-1 for reed growing media). The uncertainty in the product life cycle is concentrated to a few key processes: the direct CO2 and CH4 emissions from paludiculture, construction board additives, and CH4 emissions from vermicomposting reed. Further research to these would minimize the uncertainty and help in maximizing the climate mitigation potential of paludiculture derived products.
  • Amiri, Ali; Emami, Nargessadat; Ottelin, Juudit; Sorvari, Jaana; Marteinsson, Björn; Heinonen, Jukka; Junnila, Seppo (Elsevier, 2021)
    Energy and Buildings 241: 110962
    The construction and use of buildings consume a significant proportion of global energy and natural resources. Leadership in Energy and Environmental Design (LEED) is arguably the most international green building certification system and attempts to take actions to limit energy use of buildings and construct them sustainably. While there has been a wide range of research mainly focused on energy use and emission production during the operation phase of LEED-certified buildings, research on embodied emissions is rare. The aim of this study is to evaluate the efficiency of LEED regarding initial (pre-use) embodied emissions using life cycle assessment (LCA). The study comprised several steps using a designed model. In the first step, three optional building material scenarios were defined (optimized concrete, hybrid concrete-wood, and wooden buildings) in addition to the base case concrete building located in Iceland. Second, an LCA was conducted for each scenario. Finally, the number of LEED points and the level of LEED certification was assessed for all studied scenarios. In addition, a comparison regarding embodied emissions consideration between LEED and Building Research Establishment Environmental Assessment Method (BREEAM) as mostly used green certificate was conducted in the discussion section. The LCA showed the lowest environmental impact for the wooden building followed by the hybrid concrete-wood building. In the LEED framework, wooden and hybrid scenarios obtained 14 and 8 points that were related to material selection. Among these points, only 3 (out of a total of 110 available points) were directly accredited to embodied emissions. The study recommends that the green building certificates increase the weight of sustainable construction materials since the significance of embodied emissions is substantially growing along with the current carbon neutrality goals. As most of the materials for building construction are imported into Iceland, this study is useful for locations similar to Iceland, while overall it is beneficial for the whole world regarding climate change mitigation.
  • Kuittinen, Matti; Hautamaki, Ranja; Tuhkanen, Eeva-Maria; Riikonen, Anu; Ariluoma, Mari (2021)
    Purpose Currently, no clear guidance exists for ISO and EN standards of calculating, verifying, and reporting the climate impacts of plants, mulches, and soils used in landscape design and construction. In order to optimise the potential of ecosystem services in the mitigation of greenhouse gas emissions in the built environment, we unequivocally propose their inclusion when assessing sustainability. Methods We analysed the life cycle phases of plants, soils, and mulches from the viewpoint of compiling standard-based Environmental Product Declarations. In comparison to other construction products, the differences of both mass and carbon flows were identified in these products. Results Living and organic products of green infrastructure require an LCA approach of their own. Most importantly, if conventional life cycle guidance for Environmental Product Declarations were to be followed, over time, the asymmetric mass and carbon flows would lead to skewed conclusions. Moreover, the ability of plants to reproduce raises additional questions for allocating environmental impacts. Conclusions We present a set of recommendations that are required for compiling Environmental Product Declarations for the studied products of green infrastructure. In order to enable the quantification of the climate change mitigation potential of these products, it is essential that work for further development of LCA guidance be mandated.
  • Russo, V.; Strever, A. E.; Ponstein, Helena J. (2021)
    Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.
  • Ponstein, Helena; Ghinoi, Stefano; Steiner, Bodo (2019)
    As wine supply chains become increasingly globalized, sustainability issues take on ever greater importance. This is the first study to analyse the environmental sustainability aspect of greenhouse gas (GHG) emissions from a global wine supply chain perspective, covering just over 90% of Finland's wine imports. Lacking substantial domestic production capacity, virtually all wine consumed in Finland is imported. Finland is comparable to its Nordic neighbours, Sweden and Norway, in this respect. The Life Cycle Assessment (LCA) methodology was combined with sensitivity and scenario analyses to investigate GHG emissions implications from prospective policy changes. Our results spotlight differences related to wine production in the eight main wine producing countries for the Finnish market (Australia, Chile, France, Germany, Italy, Spain, South Africa, and the United States), related logistics, and all packaging types for wine used in Finland (glass bottle, Bag-in-Box, PET bottle, beverage carton, and pouch). We found an average value of 1.23 kg CO2e for 0.75 L wine consumed in Finland, ranging from 0.59 kg CO2e for French wine in a bag-in-box packaging to 1.92 kg CO2e for Australian wine in a glass bottle. After identifying the main GHG emission hotspots in the wine supply chain, our scenario analyses highlight the effects of reducing glass bottle weight, moving away from glass packaging toward bag-inbox, increasing bulk wine export volumes to Finland, and following the European Commission's Energy 2020 strategy which targets increasing energy efficiency by 20 percent.
  • Smetana, Sergiy; Ristic, Dusan; Pleissner, Daniel; Tuomisto, Hanna L.; Parniakov, Oleksii; Heinz, Volker (2023)
    The modern food system is characterized with high environmental impact, which is in many cases associated with increased rates of animal production and overconsumption. The adoption of alternatives to meat proteins (insects, plants, mycoprotein, microalgae, cultured meat, etc.) might potentially influence the environmental impact and human health in a positive or negative way but could also trigger indirect impacts with higher consumption rates. Current review provides a condensed analysis on potential environmental impacts, resource consumption rates and unintended trade-offs associated with integration of alternative proteins in complex global food system in the form of meat substitutes. We focus on emissions of greenhouse gases, land use, non-renewable energy use and water footprint highlighted for both ingredients used for meat substitutes and ready products. The benefits and limitations of meat substitution are highlighted in relation to a weight and protein content. The analysis of the recent research literature allowed us to define issues, that require the attention of future studies.
  • Riviere, Guillaume N.; Pion, Florian; Farooq, Muhammad; Sipponen, Mika H.; Koivula, Hanna; Jayabalan, Thangavelu; Pandard, Pascal; Marlair, Guy; Liao, Xun; Baumberger, Stephanie; Osterberg, Monika (2021)
    A "waste-valorization" approach was developed to transform recalcitrant hydrolysis lignin (HL) from secondgeneration bioethanol production into multifunctional bio-based products. The hydrolysis lignin (HL) was extracted with aqueous acetone, yielding two fractions enriched in lignin and cellulose, respectively. The soluble hydrolysis lignin (SHL) was converted into anionic and cationic colloidal lignin particles (CLPs and c-CLPs). The insoluble cellulose-rich fraction was transformed into lignocellulosic nanofibrils that were further combined with CLPs or c-CLPs to obtain nanocomposite films with tailored mechanical properties, oxygen permeability and antioxidant properties. To enable prospective applications of lignin in nanocomposite films and beyond, CLPs and c-CLPs were also produced from a soda lignin (SL) and the influence of the lignin type on the particle size and ecotoxicity was evaluated. Finally, the carbon footprint of the entire process from hydrolysis lignin to films was assessed and an integration to industrial scale was considered to reduce the energy consumption. While most previous work utilizes purified lignin and pristine and often purified cellulose fibers to produce nanomaterials, this work provides a proof of concept for utilizing the recalcitrant lignin-rich side stream of the bioethanol process as raw material for functional nanomaterials and renewable composites. (C) 2021 The Authors. Published by Elsevier B.V.