Browsing by Subject "Lipidomics"

Sort by: Order: Results:

Now showing items 1-17 of 17
  • Itokazu, Yutaka; Tajima, Nobuyoshi; Kerosuo, Laura; Somerharju, Pentti; Sariola, Hannu; Yu, Robert K.; Kakela, Reijo (2016)
    The central nervous system (CNS) harbors multiple glial fibrillary acidic protein (GFAP) expressing cell types. In addition to the most abundant cell type of the CNS, the astrocytes, various stem cells and progenitor cells also contain GFAP+ populations. Here, in order to distinguish between two types of GFAP expressing cells with or without the expression of the A2B5 antigens, we performed lipidomic analyses on A2B5+/GFAP+ and A2B5-/GFAP+ cells from rat spinal cord. First, A2B5+/GFAP- progenitors were exposed to the leukemia inhibitory factor (LIF) or bone morphogenetic protein (BMP) to induce their differentiation to A2B5+/GFAP+ cells or A2B5-/GFAP+ astrocytes, respectively. The cells were then analyzed for changes in their phospholipid, sphingolipid or acyl chain profiles by mass spectrometry and gas chromatography. Compared to A2B5+/GFAP- progenitors, A2B5-/GFAP+ astrocytes contained higher amounts of ether phospholipids (especially the species containing arachidonic acid) and sphingomyelin, which may indicate characteristics of cellular differentiation and inability for multipotency. In comparison, principal component analyses revealed that the lipid composition of A2B5+/GFAP+ cells retained many of the characteristics of A2B5+/GFAP- progenitors, but their lipid profile was different from that of A2B5-/GFAP+ astrocytes. Thus, our study demonstrated that two GFAP+ cell populations have distinct lipid profiles with the A2B5+/GFAP+ cells sharing a phospholipid profile with progenitors rather than astrocytes. The progenitor cells may require regulated low levels of lipids known to mediate signaling functions in differentiated cells, and the precursor lipid profiles may serve as one measure of the differentiation capacity of a cell population.
  • Avela, Henri F.; Siren, Heli (2020)
    The review concentrates on the properties of analytical and statistical ultrahigh-performance liquid chromatographic (UHPLC) - mass spectrometric (MS) methods suitable for glycero-, glycerophospho- and sphingolipids in lipidomics published between the years 2017 2019. Trends and fluctuations of conventional and nano-UHPLC methods with MS and tandem MS detection were observed in context of analysis conditions and tools used for data-analysis. Whereas general workflow characteristics are agreed upon, more details related to the chromatographic methodology (i.e. stationary and mobile phase conditions) need evidently agreements. Lipid quantitation relies upon isotope-labelled standards in targeted analyses and fully standardless algorithm-based untargeted analyses. Furthermore, a wide spectrum of setups have shown potential for the elucidation of complex and large datasets by minimizing the risks of systematic misinterpretation like false positives. This kind of evaluation was shown to have increased importance and usage for cross-validation and data-analysis. (C) 2020 Elsevier B.V. All rights reserved.
  • Ruhanen, Hanna; Haridas, P. A. Nidhina; Minicocci, Ilenia; Taskinen, Juuso H.; Palmas, Francesco; di Costanzo, Alessia; D'Erasmo, Laura; Metso, Jari; Partanen, Jennimari; Dalli, Jesmond; Zhou, You; Arca, Marcello; Jauhiainen, Matti; Käkelä, Reijo; Olkkonen, Vesa M. (2020)
    Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a drastic reduction of serum lipoproteins and protect against the development of atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. We characterized the impacts of ANGPTL3 depletion on the immortalized human hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several pathways related to lipid metabolism. Accordingly, ANGPTL3 depleted IHH displayed changes in cellular overall fatty acid (FA) composition and in the lipid species composition of several lipid classes, characterized by abundant n-6 and n-3 polyunsaturated FAs (PUFAs). This PUFA increase coincided with an elevation of lipid mediators, among which there were species relevant for resolution of inflammation, protection from lipotoxic and hypoxia-induced ER stress, hepatic steatosis and insulin resistance or for the recovery from cardiovascular events. Cholesterol esters were markedly reduced in ANGPTL3 KD IHH, coinciding with suppression of the SOAT1 mRNA and protein. ANGPTL3 LOF caused alterations in plasma lipoprotein FA and lipid species composition. All lipoprotein fractions of the ANGPTL3 LOF subjects displayed a marked drop of 18:2n-6, while several highly unsaturated triacylglycerol (TAG) species were enriched. The present work reveals distinct impacts of ANGPTL3 depletion on the hepatocellular lipidome, transcriptome and lipid mediators, as well as on the lipidome of lipoproteins isolated from plasma of ANGPTL3-deficient human subjects. It is important to consider these lipidomics and transcriptomics findings when targeting ANGPTL3 for therapy and translating it to the human context.
  • Sinisalu, Lisanna; Sen, Partho; Salihovic, Samira; Virtanen, Suvi M.; Hyöty, Heikki; Ilonen, Jorma; Toppari, Jorma; Veijola, Riitta; Oresic, Matej; Knip, Mikael; Hyötyläinen, Tuulia (2020)
    Celiac disease (CD) is a systemic immune-mediated disorder with increased frequency in the developed countries over the last decades implicating the potential causal role of various environmental triggers in addition to gluten. Herein, we apply determination of perfluorinated alkyl substances (PFAS) and combine the results with the determination of bile acids (BAs) and molecular lipids, with the aim to elucidate the impact of prenatal exposure on risk of progression to CD in a prospective series of children prior the first exposure to gluten (at birth and at 3 months of age). Here we analyzed PFAS, BAs and lipidomic profiles in 66 plasma samples at birth and at 3 months of age in the Type 1 Diabetes Prediction and Prevention (DIPP) study (n = 17 progressors to CD, n = 16 healthy controls, HCs). Plasma PFAS levels showed a significant inverse association with the age of CD diagnosis in infants who later progressed to the disease. Associations between BAs and triacylglycerols (TGs) showed different patterns already at birth in CD pmgressors, indicative of different absorption of lipids in these infants. In conclusion, PFAS exposure may modulate lipid and BA metabolism, and the impact is different in the infants who develop CD later in life, in comparison to HCs. The results indicate more efficient uptake of PFAS in such infants. Higher PFAS exposure during prenatal and early life may accelerate the progression to CD in the genetically predisposed children.
  • Lamichhane, Santosh; Siljander, Heli; Duberg, Daniel; Honkanen, Jarno; Virtanen, Suvi M.; Oresic, Matej; Knip, Mikael; Hyötyläinen, Tuulia (2021)
    The composition of human breast milk is highly variable inter- and intra-individually. Environmental factors are suspected to contribute to such compositional variation, however, their impact on breast milk composition is currently poorly understood. We sought to (1) define the impact of maternal exposure to per- and polyfluoroalkyl substances (PFAS) on lipid composition of human breast milk, and (2) to study the combined impact of maternal PFAS exposure and breast milk lipid composition on the growth of the infants.In a mother-infant study (n = 44) we measured the levels of PFAS and lipids in maternal serum and conducted lipidomics analysis of breast milk collect 2-4 days after the delivery and at 3 months of infant age, by using ultra high performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry. Gastrointestinal biomarkers fecal calprotectin and human beta defensin 2 were measured in the stool samples at the age of 3, 6, 9, and 12 months. Maternal diet was studied by a validated food frequency questionnaire. PFAS levels were inversely associated with total lipid levels in the breast milk collected after the delivery. In the high exposure group, the ratio of acylated saturated and polyunsaturated fatty acids in triacylglycerols was increased. Moreover, high exposure to PFAS associated with the altered phospholipid composition, which was indicative of unfavorable increase in the size of milk fat globules. These changes in the milk lipid composition were further associated with slower infant growth and with elevated intestinal inflammatory markers. Our data suggest that the maternal exposure to PFAS impacts the nutritional quality of the breast milk, which, in turn, may have detrimental impact on the health and growth of the children later in life.
  • Ruuth, Maija; Janssen, Laura G. M.; Aikas, Lauri; Tigistu-Sahle, Feven; Nahon, Kimberly J.; Ritvos, Olli; Ruhanen, Hanna; Käkelä, Reijo; Boon, Marlette R.; Öörni, Katariina; Rensen, Patrick C. N. (2019)
    BACKGROUND: South Asians are more prone to develop atherosclerotic cardiovascular disease (ASCVD) compared with white Caucasians, which is not fully explained by classical risk factors. We recently reported that the presence of aggregation-prone low-density lipoprotein (LDL) in the circulation is associated with increased ASCVD mortality. OBJECTIVE: We hypothesized that LDL of South Asians is more prone to aggregate, which may be explained by differences in their LDL lipid composition. METHODS: In this cross-sectional hypothesis-generating study, LDL was isolated from plasma of healthy South Asians (n = 12) and age- and BMI-matched white Caucasians (n = 12), and its aggregation susceptibility and lipid composition were analyzed. RESULTS: LDL from South Asians was markedly more prone to aggregate compared with white Caucasians. Among all measured lipids, sphingomyelin 24:0 and triacylglycerol 56:8 showed the highest positive correlation with LDL aggregation. In addition, LDL from South Asians was enriched in arachidonic acid containing phosphatidylcholine 38:4 and had less phosphatidylcholines and cholesteryl esters containing monounsaturated fatty acids. Interestingly, body fat percentage, which was higher in South Asians (+26%), positively correlated with LDL aggregation and highly positively correlated with triacylglycerol 56:8, sphingomyelin 24:0, and total sphingomyelin. CONCLUSIONS: LDL aggregation susceptibility is higher in healthy young South Asians compared with white Caucasians. This may be partly explained by the higher body fat percentage of South Asians, leading to sphingomyelin enrichment of LDL. We anticipate that the presence of sphingomyelin-rich, aggregation -prone LDL particles in young South Asians may increase LDL accumulation in the arterial wall and thereby contribute to their increased risk of developing ASCVD later in life. (C) 2019 National Lipid Association. Published by Elsevier Inc.
  • Suvitaival, Tommi; Bondia-Pons, Isabel; Yetukuri, Laxman; Pöhö, Päivi; Nolan, John J.; Hyötyläinen, Tuulia; Kuusisto, Johanna; Oresic, Matej (2018)
    Background. There is a need for early markers to track and predict the development of type 2 diabetes mellitus (T2DM) from the state of normal glucose tolerance through prediabetes. In this study we tested whether the plasma molecular lipidome has biomarker potential to predicting the onset of T2DM. Methods. We applied global lipidomic profiling on plasma samples from well-phenotyped men (107 cases, 216 controls) participating in the longitudinal METSIM study at baseline and at five-year follow-up. To validate the lipid markers, an additional study with a representative sample of adult male population (n = 631) was also conducted. A total of 277 plasma lipids were analyzed using the lipidomics platform based on ultra performance liquid chromatography coupled to time-of-flight mass spectrometry. Lipids with the highest predictive power for the development of T2DM were computationally selected, validated and compared to standard risk models without lipids. Results. A persistent lipid signature with higher levels of triacylglycerols and diacyl-phospholipids as well as lowerlevels of alkylacyl phosphatidylcholines was observed in progressors to T2DM. Lysophosphatidylcholine acyl C18:2 (LysoPC(18:2)), phosphatidylcholines PC(32:1), PC(34:2e) and PC(36:1), and triacylglycerol TG(17:1/18:1/18:2) were selected to the full model that included metabolic risk factors and FINDRISC variables. When further adjusting for BM and age, these lipids had respective odds ratios of 0.32, 2.4, 0.50, 2.2 and 0.31 (all p <0.05) for progression to T2DM. The independently-validated predictive power improved in all pairwise comparisons between the lipid model and the respective standard risk model without the lipids (integrated discrimination improvement IDI > 0; p <0.05). Notably, the lipid models remained predictive of the development of T2DM in the fasting plasma glucose-matched subset of the validation study. Conclusion. This study indicates that a lipid signature characteristic of T2DM is present years before the diagnosis and improves prediction of progression to T2DM. Molecular lipid biomarkers were shown to have predictive power also in a high-risk group, where standard risk factors are not helpful at distinguishing progressors from non-progressors. (C) 2017 The Authors. Published by Elsevier Inc.
  • Erkkilä, Arja T.; Manninen, Suvi; Fredrikson, Linda; Bhalke, Monika; Holopainen, Minna; Ruuth, Maija; Lankinen, Maria; Käkelä, Reijo; Öörni, Katariina; Schwab, Ursula S. (2021)
    Background: There is little knowledge on the effects of alpha-linolenic acid (ALA) and n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on the LDL lipidome and aggregation of LDL particles. Objective: We examined if consumption of Camelina sativa oil (CSO) as a source of ALA, fatty fish (FF) as a source of n-3 LCPUFA and lean fish (LF) as a source of fish protein affect the lipidome of LDL as compared to a control diet. Methods: Participants with impaired glucose tolerance (39 women and 40 men) were randomized to 4 study groups (CSO providing 10 g/d ALA, FF and LF [both 4 fish meals/wk] and control limiting their fish and ALA intake) in a 12-week, parallel trial. Diets were instructed and dietary fats were provided to the participants. The lipidome of LDL particles isolated from samples collected at baseline and after intervention was analyzed with electrospray ionization-tandem mass spectrometry. Results: In the CSO group, the relative concentrations of saturated and monounsaturated cholesteryl ester species in LDL decreased and the species with ALA increased. In the FF group, LDL phosphatidylcholine (PC) species containing n-3 LCPUFA increased. There was a significant positive correlation between the change in total sphingomyelin and change in LDL aggregation, while total PC and triunsaturated PC species were inversely associated with LDL aggregation when all the study participants were included in the analysis. Conclusion: Dietary intake of CSO and FF modifies the LDL lipidome to contain more polyunsaturated and less saturated lipid species. The LDL surface lipids are associated with LDL aggregation. (c) 2021 National Lipid Association. Published by Elsevier Inc. This is an open access article under the CC BY license ( )
  • Kiamehr, Mostafa; Viiri, Leena E.; Vihervaara, Terhi; Koistinen, Kaisa M.; Hilvo, Mika; Ekroos, Kim; Kakela, Reijo; Aalto-Setala, Katriina (2017)
    Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem cells (iPSCs) offer an alternative model to primary human hepatocytes to study lipid aberrations. However, the detailed lipid profile of HLCs is yet unknown. In the current study, functional HLCs were differentiated from iPSCs generated from dermal fibroblasts of three individuals by a three-step protocol through the definitive endoderm (DE) stage. In parallel, detailed lipidomic analyses as well as gene expression profiling of a set of lipid-metabolism-related genes were performed during the entire differentiation process from iPSCs to HLCs. Additionally, fatty acid (FA) composition of the cell culture media at different stages was determined. Our results show that major alterations in the molecular species of lipids occurring during DE and early hepatic differentiation stages mainly mirror the quality and quantity of the FAs supplied in culture medium at each stage. Polyunsaturated phospholipids and sphingolipids with a very long FA were produced in the cells at a later stage of differentiation. This work uncovers the previously unknown lipid composition of iPSC-HLCs and its alterations during the differentiation in conjunction with the expression of key lipid-associated genes. Together with biochemical, functional and gene expression measurements, the lipidomic analyses allowed us to improve our understanding of the concerted influence of the exogenous metabolite supply and cellular biosynthesis essential for iPSC-HLC differentiation and function. Importantly, the study describes in detail a cell model that can be applied in exploring, for example, the lipid metabolism involved in the development of fatty liver disease or atherosclerosis.
  • Hyotylainen, Tuulia; Ahonen, Linda; Pöhö, Paivi; Oresic, Matej (2017)
    Lipids have many central physiological roles including as structural components of cell membranes, energy storage sources and intermediates in signaling pathways. Lipid-related disturbances are known to underlie many diseases and their co-morbidities. The emergence of lipidomics has empowered researchers to study lipid metabolism at the cellular as well as physiological levels at a greater depth than was previously possible. The key challenges ahead in the field of lipidomics in medical research lie in the development of experimental protocols and in silico techniques needed to study lipidomes at the systems level. Clinical questions where lipidomics may have an impact in healthcare settings also need to be identified, both from the health outcomes and health economics perspectives. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
  • Sen, Partho; Dickens, Alex M.; Lopez-Bascon, Maria Asuncion; Lindeman, Tuomas; Kemppainen, Esko; Lamichhane, Santosh; Rönkkö, Tuukka; Ilonen, Jorma; Toppari, Jorma; Veijola, Riitta; Hyöty, Heikki; Hyötyläinen, Tuulia; Knip, Mikael; Oresic, Matej (2020)
    Aims/hypothesis Previous metabolomics studies suggest that type 1 diabetes is preceded by specific metabolic disturbances. The aim of this study was to investigate whether distinct metabolic patterns occur in peripheral blood mononuclear cells (PBMCs) of children who later develop pancreatic beta cell autoimmunity or overt type 1 diabetes. Methods In a longitudinal cohort setting, PBMC metabolomic analysis was applied in children who (1) progressed to type 1 diabetes (PT1D, n = 34), (2) seroconverted to >= 1 islet autoantibody without progressing to type 1 diabetes (P1Ab, n = 27) or (3) remained autoantibody negative during follow-up (CTRL, n = 10). Results During the first year of life, levels of most lipids and polar metabolites were lower in the PT1D and P1Ab groups compared with the CTRL group. Pathway over-representation analysis suggested alanine, aspartate, glutamate, glycerophospholipid and sphingolipid metabolism were over-represented in PT1D. Genome-scale metabolic models of PBMCs during type 1 diabetes progression were developed by using publicly available transcriptomics data and constrained with metabolomics data from our study. Metabolic modelling confirmed altered ceramide pathways, known to play an important role in immune regulation, as specifically associated with type 1 diabetes progression. Conclusions/interpretation Our data suggest that systemic dysregulation of lipid metabolism, as observed in plasma, may impact the metabolism and function of immune cells during progression to overt type 1 diabetes. Data availability The GEMs for PBMCs have been submitted to BioModels (), under accession number MODEL1905270001. The metabolomics datasets and the clinical metadata generated in this study were submitted to MetaboLights (), under accession number MTBLS1015.
  • Jäntti, Maria H.; Jackson, Shelley N.; Kuhn, Jeffrey; Parkkinen, Ilmari; Sree, Sreesha; Hinkle, Joshua J.; Jokitalo, Eija; Deterding, Leesa J.; Harvey, Brandon K. (2022)
    The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium ho-meostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Sur-prisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.
  • Hilvo, Mika; Simolin, Helena; Metso, Jari; Ruuth, Maija; Öörni, Katariina; Jauhiainen, Matti; Laaksonen, Reijo; Baruch, Amos (2018)
    Background and aims: While inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to result in dramatic lowering of LDL-cholesterol (LDL-C), it is poorly understood how it affects other lipid species and their metabolism. The aim of this study was to characterize the alterations in the lipidome of plasma and lipoprotein particles after administration of PCSK9 inhibiting antibody to patients with established coronary heart disease. Methods: Plasma samples were obtained from patients undergoing a randomized placebo-controlled phase II trial (EQUATOR) for the safe and effective use of RG7652, a fully human monoclonal antibody inhibiting PCSK9 function. Lipoprotein fractions were isolated by sequential density ultracentrifugation, and both plasma and major lipoprotein classes (VLDL-IDL, LDL, HDL) were subjected to mass spectrometric lipidomic profiling. Results: PCSK9 inhibition significantly decreased plasma levels of several lipid classes, including sphingolipids (dihydroceramides, glucosylceramides, sphingomyelins, ceramides), cholesteryl esters and free cholesterol. Previously established ceramide ratios predicting cardiovascular mortality, or inflammation related eicosanoid lipids, were not altered. RG7652 treatment also affected the overall and relative distribution of lipids in lipoprotein classes. An overall decrease of total lipid species was observed in LDL and VLDL thorn IDL particles, while HDL-associated phospholipids increased. Following the treatment, LDL displayed reduced lipid cargo, whereas relative lipid proportions of the VLDL thorn IDL particles were mostly unchanged, and there were relatively more lipids carried in the HDL particles. Conclusions: Administration of PCSK9 antibody significantly alters the lipid composition of plasma and lipoprotein particles. These changes further shed light on the link between anti-PCSK9 therapies and cardiovascular risk. (C) 2018 Elsevier B.V. All rights reserved.
  • Woronik, Alyssa; Stefanescu, Constanti; Käkelä, Reijo; Wheat, Christopher W.; Lehmann, Philipp (2018)
    Across a wide range of taxa, individuals within populations exhibit alternative life history strategies (ALHS) where their phenotypes dramatically differ due to divergent investments in growth, reproduction and survivorship, with the resulting trade-offs directly impacting Darwinian fitness. Though the maintenance of ALHS within populations is fairly well understood, little is known regarding the physiological mechanisms that underlie ALHS and how environmental conditions can affect the evolution and expression of these phenotypes. One such ALHS, known as Alba, exists within females of many species in the butterfly genus Colias. Previous works in New World species not only found that female morphs differ in their wing color due to a reallocation of resources away from the synthesis of wing pigments to other areas of development, but also that temperature played an important role in these trade-offs. Here we build on previous work conducted in New World species by measuring life history traits and conducting lipidomics on individuals reared at hot and cold temperatures in the Old World species Colias croceus. Results suggest that the fitness of Alba and orange morphs likely varies with rearing temperature, where Alba females have higher fitness in cold conditions and orange in warm. Additionally shared traits between Old and New World species suggest the Alba mechanism is likely conserved across the genus. Finally, in the cold treatment we observe an intermediate yellow morph that may have decreased fitness due to slower larval development. This cost may manifest as disruptive selection in the field, thereby favoring the maintenance of the two discrete morphs. Taken together these results add insights into the evolution of, and the selection on, the Alba ALHS.
  • Mir, Sartaj Ahmad; Chen, Li; Burugupalli, Satvika; Burla, Bo; Ji, Shanshan; Smith, Adam Alexander T.; Narasimhan, Kothandaraman; Ramasamy, Adaikalavan; Tan, Karen Mei Ling; Huynh, Kevin; Giles, Corey; Mei, Ding; Wong, Gerard; Yap, Fabian; Tan, Kok Hian; Collier, Fiona; Saffery, Richard; Vuillermin, Peter; Bendt, Anne K.; Burgner, David; Ponsonby, Anne Louise; Lee, Yung Seng; Chong, Yap Seng; Gluckman, Peter D.; Eriksson, Johan G.; Meikle, Peter J.; Wenk, Markus R.; Karnani, Neerja (2022)
    Background: Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. Methods: LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26–28 weeks of gestation (n=752) and 4–5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. Results: Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=−2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=−0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. Conclusions: In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. Clinical trial registration: This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875.
  • McGlinchey, Aidan; Sinioja, Tim; Lamichhane, Santosh; Sen, Partho; Bodin, Johanna; Siljander, Heli; Dickens, Alex M.; Geng, Dawei; Carlsson, Cecilia; Duberg, Daniel; Ilonen, Jorma; Virtanen, Suvi M.; Dirven, Hubert; Berntsen, Hanne Friis; Zimmer, Karin; Nygaard, Unni C.; Oresic, Matej; Knip, Mikael; Hyötyläinen, Tuulia (2020)
    In the last decade, increasing incidence of type 1 diabetes (T1D) stabilized in Finland, a phenomenon that coincides with tighter regulation of perfluoroalkyl substances (PFAS). Here, we quantified PFAS to examine their effects, during pregnancy, on lipid and immune-related markers of T1D risk in children. In a mother-infant cohort (264 dyads), high PFAS exposure during pregnancy associated with decreased cord serum phospholipids and progression to T1D-associated islet autoantibodies in the offspring. This PFAS-lipid association appears exacerbated by increased human leukocyte antigen-conferred risk of T1D in infants. Exposure to a single PFAS compound or a mixture of organic pollutants in non-obese diabetic mice resulted in a lipid profile characterized by a similar decrease in phospholipids, a marked increase of lithocholic acid, and accelerated insulitis. Our findings suggest that PFAS exposure during pregnancy contributes to risk and pathogenesis of T1D in offspring.
  • Suvitaival, Tommi; Rogers, Simon; Kaski, Samuel (2014)