Browsing by Subject "Liquid chromatography"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Avela, Henri F.; Siren, Heli (2020)
    The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
  • Turunen, Soile; Puurunen, Jenni; Auriola, Seppo; Kullaa, Arja M.; Kärkkäinen, Olli; Lohi, Hannes; Hanhineva, Kati (2020)
    Introduction Saliva metabolites are suggested to reflect the health status of an individual in humans. The same could be true with the dog (Canis lupus familiaris), an important animal model of human disease, but its saliva metabolome is unknown. As a non-invasive sample, canine saliva could offer a new alternative material for research to reveal molecular mechanisms of different (patho)physiological stages, and for veterinary medicine to monitor dogs' health trajectories. Objectives To investigate and characterize the metabolite composition of dog and human saliva in a non-targeted manner. Methods Stimulated saliva was collected from 13 privately-owned dogs and from 14 human individuals. We used a non-targeted ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) method to measure metabolite profiles from saliva samples. Results We identified and classified a total of 211 endogenous and exogenous salivary metabolites. The compounds included amino acids, amino acid derivatives, biogenic amines, nucleic acid subunits, lipids, organic acids, small peptides as well as other metabolites, like metabolic waste molecules and other chemicals. Our results reveal a distinct metabolite profile of dog and human saliva as 25 lipid compounds were identified only in canine saliva and eight dipeptides only in human saliva. In addition, we observed large variation in ion abundance within and between the identified saliva metabolites in dog and human. Conclusion The results suggest that non-targeted metabolomics approach utilizing UHPLC-qTOF-MS can detect a wide range of small compounds in dog and human saliva with partially overlapping metabolite composition. The identified metabolites indicate that canine saliva is potentially a versatile material for the discovery of biomarkers for dog welfare. However, this profile is not complete, and dog saliva needs to be investigated in the future with other analytical platforms to characterize the whole canine saliva metabolome. Furthermore, the detailed comparison of human and dog saliva composition needs to be conducted with harmonized study design.
  • Marzabani, Rezvan; Rezadoost, Hassan; Choopanian, Peyman; Kolahdooz, Sima; Mozafari, Nikoo; Mirzaie, Mehdi; Karimi, Mehrdad; Nieminen, Anni; Jafari, Mohieddin (2021)
    Introduction Vitiligo pathogenesis is complicated, and several possibilities were suggested. However, it is well-known that the metabolism of pigments plays a significant role in the pathogenicity of the disease. Objectives We explored the role of amino acids in vitiligo using targeted metabolomics. Methods The amino acid profile was studied in plasma using liquid chromatography. First, 22 amino acids were derivatized and precisely determined. Next, the concentrations of the amino acids and the molar ratios were calculated in 31 patients and 34 healthy individuals. Results The differential concentrations of amino acids were analyzed and eight amino acids, i.e., cysteine, arginine, lysine, ornithine, proline, glutamic acid, histidine, and glycine were observed differentially. The ratios of cysteine, glutamic acid, and proline increased significantly in Vitiligo patients, whereas arginine, lysine, ornithine, glycine, and histidine decreased significantly compared to healthy individuals. Considering the percentage of skin area, we also showed that glutamic acid significantly has a higher amount in patients with less than 25% involvement compared to others. Finally, cysteine and lysine are considered promising candidates for diagnosing and developing the disorder with high accuracy (0.96). Conclusion The findings are consistent with the previously illustrated mechanism of Vitiligo, such as production deficiency in melanin and an increase in immune activity and oxidative stress. Furthermore, new evidence was provided by using amino acids profile toward the pathogenicity of the disorder.
  • Hamzah, Nurhazlina; Kjellberg, Matti; Vanninen, Paula (2021)
    Highly polar ethanolamines (EAs), excreted in urine, are hydrolysis products of nitrogen mustards (NMs), which are prohibited by the Chemical Weapons Convention (CWC). The methods established for biological matrices are essential for verification analysis of the CWC related chemicals. This paper describes a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method developed for qualitative and quantitative analysis of EAs, N-ethyldiethanolamine (EDEA), N-methyldiethanolamine (MDEA) and triethanolamine (TEAOH) from urine samples. After optimization of sample preparation and chromatographic conditions, the method was fully validated. Silica solid-phase extraction (SPE) cartridges and a porous graphite carbon (PGC) column were selected for validation studies. The method is linear from 5 to 500, 0.5 to 250, and 0.5 to 500 ng/mL for TEAOH, EDEA, and MDEA, respectively. It is also precise and accurate. A minimum sample amount of 0.5 mL urine was used. The limit of quantification using this approach was 0.4, 5.5, and 6.3 ng/mL for MDEA, EDEA and TEAOH, respectively. The combination of the PGC column and high pH eluents in analysis retained and separated the studied EAs. Retention times were 2.11, 2.56 and 2.98 min for MDEA, EDEA and TEAOH, respectively. The method is applicable for verification analysis of the CWC.
  • El Fellah, Samira; Duporte, Geoffroy; Siren, Heli (2017)
    Steroid hormones, botrydial, and inorganic ions were studied from cold and hot tap water samples with capillary electrophoresis techniques using UV detection. Identification of the steroids and botrydial was made with ultra-high -performance liquid chromatography (UHPLC) coupled to electrospray ionization orbitrap high-resolution mass spectrometry. Solid phase extraction with nonpolar and ion-exchange sorbents was needed to enrich the compounds for CE and UHPLC studies. The steroids identified from the drinking water samples were estradiol glucoside, androstenedione, testosterone, and progesterone. However, only progesterone could be quantified in both cold and hot tap water samples from Helsinki households. Its concentration varied from 0.031 ng/L to 0.135 ng/L and from 0.054 ng/L to 0.191 ng/L, respectively. Chloride and nitrate amounts were 25 mg/L. Calcium, potassium, magnesium, and sodium were 20, 1, 1, and 17 mg/L at the highest, respectively. Copper, iron, sulphate, and ammonium were below the methods concentration limits. Botrydial from Botrytis cinerea mould was identified in all drinking waters. In both cold and hot tap waters its concentration was 861-3900% higher than in a drilled well water that was also used as the household tap water. The mould was also confirmed by identification of its metabolite abscisic acid. (C) 2017 Elsevier B.V. All rights reserved.