Browsing by Subject "Logic"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Pavlović, Edi; Norbert Gratzl (2019)
    This article investigates the proof theory of the Quantified Argument Calculus (Quarc) as developed and systematically studied by Hanoch Ben-Yami [3, 4]. Ben-Yami makes use of natural deduction (Suppes-Lemmon style), we, however, have chosen a sequent calculus presentation, which allows for the proofs of a multitude of significant meta-theoretic results with minor modifications to the Gentzen's original framework, i.e., LK. As will be made clear in course of the article LK-Quarc will enjoy cut elimination and its corollaries (including subformula property and thus consistency).
  • Barbero, Fausto (2019)
    We analyse the two definitions of generalized quantifiers for logics of dependence and independence that have been proposed by F. Engstrom. comparing them with a more general, higher order definition of team quantifier. We show that Engstrom's definitions (and other quantifiers from the literature) can be identified, by means of appropriate lifts, with special classes of team quantifiers. We point out that the new team quantifiers express a quantitative and a qualitative component, while Engstrom's quantifiers only range over the latter. We further argue that Engstrom's definitions are just embeddings of the first-order generalized quantifiers into team semantics. and fail to capture an adequate notion of team-theoretical generalized quantifier, save for the special cases in which the quantifiers are applied to flat formulas. We also raise several doubts concerning the meaningfulness of the monotone/nonmonotone distinction in this context. In the appendix we develop some proof theory for Engstrom's quantifiers.