Browsing by Subject "Low toxin doses"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Belz, Regina G.; Sinkkonen, Aki (2019)
    Numerous intentionally released toxins persist in agricultural or natural environments at low concentrations. Such low toxin doses are regularly associated with hormesis, i.e., growth stimulation, and they are suspected to affect mortality and within-population plant size distribution in dense plant stands. However, it is not known whether all these low-dose effects exist when plants grow in soil. We exposed barley to a range of low glyphosate doses and let the plants grow in dense stands for several weeks in soil. Six experiments were done that contained altogether 10,260 seedlings in 572 pots. We evaluated if the changes in average biomass and shoot length occur at the same concentrations as do the effects on slow- and fast-growing individuals, if seed size or early vigor explains variation in the response to glyphosate, and if low toxin doses change within-population mortality. Plant biomass, length and survival of subpopulations changed at doses that did not affect mean biomass. Effects of early vigor faded early, but differences in seed size and particularly vegetative growth had impacts: fast-growing plants hardly showed hormesis, whereas hormesis was particularly strong among slow-growing individuals. Compared to the population mean, glyphosate effects started at lower doses among slow-growing individuals and at higher doses among fast-growing individuals. Several times higher doses were needed before the fast-growing individuals showed the same toxicity as most of the population. Low toxin doses regularly enhanced the growth of the smallest individuals, which reduced size variation within populations and was associated with a higher number of surviving plants. Indeed, in one experiment self-thinning was not observed at low doses that stimulated the growth of slow-growing plants. As glyphosate levels in this study match those observed in agricultural fields and natural environments, we conclude that even low-levels of agro-environmental contamination are likely to shape phenotypic response, which might lead to adaptation and cascading ecological impacts.
  • Patama, Marjo; Belz, Regina G.; Sinkkonen, Aki (2019)
    HHCB [1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran] and 4-tert-octylphenol [4-(1,1,3,3-tetramethylbutyl)phenol] are widely used emerging contaminants that have the potential to cause adverse effects in the environment. The purpose of this study was to observe if and how environmentally realistic concentrations of these contaminants alter growth in plant populations. It was hypothesized that within an exposed Gypsophila elegans Bieb (annual baby's breath) population especially fast-growing seedlings are impaired even when the population mean is unaffected, and small doses can cause hormesis and, thus, an increase in shoot or root length. In a dose-response experiment, an experimental population of G. elegans was established (total 15.600 seeds, 50 seeds per replicate, 24 replicates per concentration, 5.2 seedlings/cm(2)) and exposed to 12 doses of HHCB or 4-tert-octylphenol. After five days, shoot and root length values were measured and population averages, as well as slow- and fast-growing subpopulations, were compared with unexposed controls. Growth responses were predominantly monophasic. HHCB seemed to selectively inhibit both root and shoot elongation among slow- and fast-growing individuals, while 4-tert-octylphenol selectively inhibited both root and shoot elongation of mainly fast-growing seedlings. The ED50 values (dose causing 50% inhibition) revealed that the slow-growing seedlings were more sensitive and fast-growing seedlings less sensitive than the average of all individuals. Although there was toxicant specific variation between the effects, selective toxicity was consistently found among both slow- and fast-growing plants starting already at concentrations of 0.0067 mu M, that are usually considered to be harmless. This study indicates that these contaminants can change size distribution of a plant population at low concentrations in the nM/mu M range.