Browsing by Subject "MANNOSE-BINDING LECTIN"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Nordic Study Grp Pediat Rheumatolo; Glerup, Mia; Thiel, Steffen; Rypdal, Veronika; Peltoniemi, Suvi; Aalto, Kristiina; Herlin, Troels (2019)
    Background To determine the serum levels of the lectin pathway proteins early in the disease course and 17 years after disease onset and to correlate the protein levels to markers of disease activity in participants from a population-based Nordic juvenile idiopathic arthritis (JIA) cohort. Additionally, to assess the predictive value of lectin pathway proteins with respect to remission status. Methods A population-based cohort study of consecutive cases of JIA with a disease onset from 1997 to 2000 from defined geographical areas of Finland, Sweden, Norway and Denmark with 17 years of follow-up was performed. Clinical characteristics were registered and H-ficolin, M-ficolin, MASP-1, MASP-3, MBL and CL-K1 levels in serum were analyzed. Results In total, 293 patients with JIA were included (mean age 23.7 +/- 4.4 years; mean follow-up 17.2 +/- 1.7 years). Concentrations of the lectin protein levels in serum were higher at baseline compared to the levels 17 years after disease onset (p
  • Brodszki, Nicholas; Frazer-Abel, Ashley; Grumach, Anete S.; Kirschfink, Michael; Litzman, Jiri; Perez, Elena; Seppänen, Mikko R. J.; Sullivan, Kathleen E.; Jolles, Stephen (2020)
    This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for similar to 5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
  • Holmberg, Ville; Onkamo, Paivi; Lahtela, Laura Elisa; Lahermo, Paivi; Bedu-Addo, George; Mockenhaupt, Frank P.; Meri, Seppo (2012)
  • Ostergaard, Jakob Appel; Jansson Sigfrids, Fanny; Forsblom, Carol; Dahlström, Emma H.; Thorn, Lena M.; Harjutsalo, Valma; Flyvbjerg, Allan; Thiel, Steffen; Krarup Hansen, Troels; Groop, Per-Henrik (2021)
    H-ficolin recognizes patterns on microorganisms and stressed cells and can activate the lectin pathway of the complement system. We aimed to assess H-ficolin in relation to the progression of diabetic kidney disease (DKD), all-cause mortality, diabetes-related mortality, and cardiovascular events. Event rates per 10-unit H-ficolin-increase were compared in an observational follow-up of 2,410 individuals with type 1 diabetes from the FinnDiane Study. DKD progression occurred in 400 individuals. The unadjusted hazard ratio (HR) for progression was 1.29 (1.18-1.40) and 1.16 (1.05-1.29) after adjustment for diabetes duration, sex, HbA(1c), systolic blood pressure, and smoking status. After adding triglycerides to the model, the HR decreased to 1.07 (0.97-1.18). In all, 486 individuals died, including 268 deaths of cardiovascular causes and 192 deaths of complications to diabetes. HRs for all-cause mortality and cardiovascular mortality were 1.13 (1.04-1.22) and 1.05 (0.93-1.17), respectively, in unadjusted analyses. These estimates lost statistical significance in adjusted models. However, the unadjusted HR for diabetes-related mortality was 1.19 (1.05-1.35) and 1.18 (1.02-1.37) with the most stringent adjustment level. Our results, therefore, indicate that H-ficolin predicts diabetes-related mortality, but neither all-cause mortality nor fatal/non-fatal cardiovascular events. Furthermore, H-ficolin is associated with DKD progression, however, not independently of the fully adjusted model.