Browsing by Subject "MAXIMUM-LIKELIHOOD"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • Crespo, L.C.; Domenech, M; Enguídanos, A.; Malumbres-Olarte, Jagoba; Cardoso, Pedro; Moya-Larano, J; Frias-Lopez, Cristina; Macias Hernandez, Nuria Esther; de Mas, Eva; Mazzuca, Paola; Mora, E.; Opatova, Vera; Planas, Enric; Ribera, Carles; Roca-Cusachs, M.; Ruiz, D.; Sousa, Pedro; Tonzo, V.; Arnedo, M.A. (2018)
    Background A large scale semi-quantitative biodiversity assessment was conducted in white oak woodlands in areas included in the Spanish Network of National Parks, as part of a project aimed at revealing biogeographic patterns and identify biodiversity drivers. The semi-quantitative COBRA sampling protocol was conducted in sixteen 1-ha plots across six national parks using a nested design. All adult specimens were identified to species level based on morphology. Uncertain delimitations and identifications due to either limited information of diagnostic characters or conflicting taxonomy were further investigated using DNA barcode information. New information We identified 376 species belonging to 190 genera in 39 families, from the 8,521 adults found amongst the 20,539 collected specimens. Faunistic results include the discovery of 7 new species to the Iberian Peninsula, 3 new species to Spain and 11 putative new species to science. As largely expected by environmental features, the southern parks showed a higher proportion of Iberian and Mediterranean species than the northern parks, where the Palearctic elements were largely dominant. The analysis of approximately 3,200 DNA barcodes generated in the present study, corroborated and provided finer resolution to the morphologically based delimitation and identification of specimens in some taxonomically challenging families. Specifically, molecular data confirmed putative new species with diagnosable morphology, identified overlooked lineages that may constitute new species, confirmed assignment of specimens of unknown sexes to species and identified cases of misidentifications and phenotypic polymorphisms.
  • He, Liang; Pitkaniemi, Janne; Silventoinen, Karri; Sillanpaa, Mikko J. (2017)
    Estimating dynamic effects of age on the genetic and environmental variance components in twin studies may contribute to the investigation of gene-environment interactions, and may provide more insights into more accurate and powerful estimation of heritability. Existing parametric models for estimating dynamic variance components suffer from various drawbacks such as limitation of predefined functions. We present ACEt, an R package for fast estimating dynamic variance components and heritability that may change with respect to age or other moderators. Building on the twin models using penalized splines, ACEt provides a unified framework to incorporate a class of ACE models, in which each component can be modeled independently and is not limited by a linear or quadratic function. We demonstrate that ACEt is robust against misspecification of the number of spline knots, and offers a refined resolution of dynamic behavior of the genetic and environmental components and thus a detailed estimation of age-specific heritability. Moreover, we develop resampling methods for testing twin models with different variance functions including splines, log-linearity and constancy, which can be easily employed to verify various model assumptions. We evaluated the type I error rate and statistical power of the proposed hypothesis testing procedures under various scenarios using simulated datasets. Potential numerical issues and computational cost were also assessed through simulations. We applied the ACEt package to a Finnish twin cohort to investigate age-specific heritability of body mass index and height. Our results show that the age-specific variance components of these two traits exhibited substantially different patterns despite of comparable estimates of heritability. In summary, the ACEt R package offers a useful tool for the exploration of age-dependent heritability and model comparison in twin studies.
  • Boluda, C. G.; Rico, V. J.; Divakar, P. K.; Nadyeina, O.; Myllys, L.; McMullin, R. T.; Zamora, J. C.; Scheidegger, C.; Hawksworth, D. L. (2019)
    In many lichen-forming fungi, molecular phylogenetic analyses lead to the discovery of cryptic species within traditional morphospecies. However, in some cases, molecular sequence data also questions the separation of phenotypically characterised species. Here we apply an integrative taxonomy approach - including morphological, chemical, molecular, and distributional characters - to re-assess species boundaries in a traditionally speciose group of hair lichens, Bryoria sect. Implexae. We sampled multilocus sequence and microsatellite data from 142 specimens from a broad intercontinental distribution. Molecular data included DNA sequences of the standard fungal markers ITS, IGS, GAPDH, two newly tested loci (FRBi15 and FRBi16), and SSR frequencies from 18 microsatellite markers. Datasets were analysed with Bayesian and maximum likelihood phylogenetic reconstruction, phenogram reconstruction, STRUCTURE Bayesian clustering, principal coordinate analysis, haplotype network, and several different species delimitation analyses (ABGD, PTP, GMYC, and DISSECT). Additionally, past population demography and divergence times are estimated. The different approaches to species recognition do not support the monophyly of the 11 currently accepted morphospecies, and rather suggest the reduction of these to four phylogenetic species. Moreover, three of these are relatively recent in origin and cryptic, including phenotypically and chemically variable specimens. Issues regarding the integration of an evolutionary perspective into taxonomic conclusions in species complexes, which have undergone recent diversification, are discussed. The four accepted species, all epitypified by sequenced material, are Bryoria fuscescens, B. glabra, B. kockiana, and B. pseudofuscescens. Ten species rank names are reduced to synonymy. In the absence of molecular data, they can be recorded as the B. fuscescens complex. Intraspecific phenotype plasticity and factors affecting the speciation of different morphospecies in this group of Bryoria are outlined.
  • Rossi, Chiara; Zadra, Nicola; Fevola, Cristina; Ecke, Frauke; Hornfeldt, Birger; Kallies, Rene; Kazimirova, Maria; Magnusson, Magnus; Olsson, Gert E.; Ulrich, Rainer G.; Jaaskelainen, Anne J.; Henttonen, Heikki; Hauffe, Heidi C. (2021)
    The picornavirus named 'Ljungan virus' (LV, species Parechovirus B) has been detected in a dozen small mammal species from across Europe, but detailed information on its genetic diversity and host specificity is lacking. Here, we analyze the evolutionary relationships of LV variants circulating in free-living mammal populations by comparing the phylogenetics of the VP1 region (encoding the capsid protein and associated with LV serotype) and the 3D(pol) region (encoding the RNA polymerase) from 24 LV RNA-positive animals and a fragment of the 5 ' untranslated region (UTR) sequence (used for defining strains) in sympatric small mammals. We define three new VP1 genotypes: two in bank voles (Myodes glareolus) (genotype 8 from Finland, Sweden, France, and Italy, and genotype 9 from France and Italy) and one in field voles (Microtus arvalis) (genotype 7 from Finland). There are several other indications that LV variants are host-specific, at least in parts of their range. Our results suggest that LV evolution is rapid, ongoing and affected by genetic drift, purifying selection, spillover and host evolutionary history. Although recent studies suggest that LV does not have zoonotic potential, its widespread geographical and host distribution in natural populations of well-characterized small mammals could make it useful as a model for studying RNA virus evolution and transmission.
  • Timmermans, Martijn J. T. N.; Barton, Christopher; Haran, Julien; Ahrens, Dirk; Culverwell, C. Lorna; Ollikainen, Alison; Dodsworth, Steven; Foster, Peter G.; Bocak, Ladislav; Vogler, Alfried P. (2016)
    Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.
  • Batllori, Enric; Lloret, Francisco; Aakala, Tuomas; Anderegg, William R. L.; Aynekulu, Ermias; Bendixsen, Devin P.; Bentouati, Abdallah; Bigler, Christof; Burk, C. John; Camarero, J. Julio; Colangelo, Michele; Coop, Jonathan D.; Fensham, Roderick; Floyd, M. Lisa; Galiano, Lucia; Ganey, Joseph L.; Gonzalez, Patrick; Jacobsen, Anna L.; Kane, Jeffrey Michael; Kitzberger, Thomas; Linares, Juan C.; Marchetti, Suzanne B.; Matusick, George; Michaelian, Michael; Navarro-Cerrillo, Rafael M.; Pratt, Robert Brandon; Redmond, Miranda D.; Rigling, Andreas; Ripullone, Francesco; Sanguesa-Barreda, Gabriel; Sasal, Yamila; Saura-Mas, Sandra; Suarez, Maria Laura; Veblen, Thomas T.; Vila-Cabrera, Albert; Vincke, Caroline; Ben Zeeman, (2020)
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.
  • Liu, Li-Na; Razaq, Abdul; Atri, Narender Singh; Bau, Tolgor; Belbahri, Lassaad; Bouket, Ali Chenari; Chen, Lai-Ping; Deng, Chu; Ilyas, Sobia; Khalid, Abdul Nasir; Kitaura, Marcos Junji; Kobayashi, Takahito; Li, Yu; Lorenz, Aline Pedroso; Ma, Yuan-Hao; Malysheva, Ekaterina; Malysheva, Vera; Nuytinck, Jorinde; Qiao, Min; Saini, Munruchi Kaur; Scur, Mayara Camila; Sharma, Samidha; Shu, Li-Li; Spirin, Viacheslav; Tanaka, Yoshikazu; Tojo, Motoaki; Uzuhashi, Shihomi; Valerio-Junior, Claudio; Verbeken, Annemieke; Verma, Balwant; Wu, Ri-Han; Xu, Jian-Ping; Yu, Ze-Fen; Zeng, Hui; Zhang, Bo; Banerjee, Arghya; Beddiar, Arifa; Bordallo, Juan-Julian; Dafri, Ahlem; Dima, Balint; Krisai-Greilhuber, Irmgard; Lorenzini, Marilinda; Mandal, Raghunath; Morte, Asuncion; Nath, Partha Sarathi; Papp, Viktor; Pavlik, Jozef; Rodriguez, Antonio; Sevcikova, Hana; Urban, Alexander; Voglmayr, Hermann; Zapparoli, Giacomo (2018)
    Eight new species presented are Calostoma areolatum collected in Wuyishan National Park (China), Crinipellis bidens from Hubei Province (China), Lactifluus sainii from Himalayan India, Inocybe elata from Yunnan (China), Inocybe himalayensis from Pakistan. Specimens previously identified as Massalongia carnosa represent a new species, namely M. patagonica restricted to southern South America. Saprolegnia maragheica is a new oomycete species of fresh water in Maraghe (Iran). Uncispora wuzhishanensis is a new aquatic hyphomycete species. A type specimen of Raddetes turkestanicus was studied and based on this the new combination Conocybe turkestanica, is proposed. Argyranthemum frutescens is a new host for Alternaria alternata and Syzygium cumini for Phyllosticta capitalensis in India. Crepidotus ehrendorferi is confirmed for Hungary and Pluteus leucoborealis for Central Europe, and for the phytogeographical region of Carpaticum. Pseudopithomyces palmicola is shown to occur on grapevine and it is validated by adding a unique identifier. Terfezia fanfani is reported first from Algeria.
  • Karlsson, Magnus; Durling, Mikael Brandstrom; Choi, Jaeyoung; Kosawang, Chatchai; Lackner, Gerald; Tzelepis, Georgios D.; Nygren, Kristiina; Dubey, Mukesh K.; Kamou, Nathalie; Levasseur, Anthony; Zapparata, Antonio; Wang, Jinhui; Amby, Daniel Buchvaldt; Jensen, Birgit; Sarrocco, Sabrina; Panteris, Emmanuel; Lagopodi, Anastasia L.; Poeggeler, Stefanie; Vannacci, Giovanni; Collinge, David B.; Hoffmeister, Dirk; Henrissat, Bernard; Lee, Yong-Hwan; Jensen, Dan Funck (2015)
  • Kerchev, Pavel; Waszczak, Cezary; Lewandowska, Aleksandra; Willems, Patrick; Shapiguzov, Alexey; Li, Zhen; Alseekh, Saleh; Muhlenbock, Per; Hoeberichts, Frank A.; Huang, Jingjing; Van der Kelen, Katrien; Kangasjärvi, Jaakko; Fernie, Alisdair R.; De Smet, Riet; Van de Peer, Yves; Messens, Joris; Van Breusegem, Frank (2016)
    The genes coding for the core metabolic enzymes of the photorespiratory pathway that allows plants with C3-type photosynthesis to survive in an oxygen-rich atmosphere, have been largely discovered in genetic screens aimed to isolate mutants that are unviable under ambient air. As an exception, glycolate oxidase (GOX) mutants with a photorespiratory phenotype have not been described yet in C3 species. Using Arabidopsis (Arabidopsis thaliana) mutants lacking the peroxisomal CATALASE2 (cat2-2) that display stunted growth and cell death lesions under ambient air, we isolated a second-site loss-of-function mutation in GLYCOLATE OXIDASE1 (GOX1) that attenuated the photorespiratory phenotype of cat2-2. Interestingly, knocking out the nearly identical GOX2 in the cat2-2 background did not affect the photorespiratory phenotype, indicating that GOX1 and GOX2 play distinct metabolic roles. We further investigated their individual functions in single gox1-1 and gox2-1 mutants and revealed that their phenotypes can be modulated by environmental conditions that increase the metabolic flux through the photorespiratory pathway. High light negatively affected the photosynthetic performance and growth of both gox1-1 and gox2-1 mutants, but the negative consequences of severe photorespiration were more pronounced in the absence of GOX1, which was accompanied with lesser ability to process glycolate. Taken together, our results point toward divergent functions of the two photorespiratory GOX isoforms in Arabidopsis and contribute to a better understanding of the photorespiratory pathway.
  • Heidel-Fischer, Hanna M.; Vogel, Heiko; Heckel, David G.; Wheat, Christopher W. (2010)
  • Hippen, Ariel A.; Falco, Matias M.; Weber, Lukas M.; Erkan, Erdogan Pekcan; Zhang, Kaiyang; Doherty, Jennifer Anne; Vähärautio, Anna; Greene, Casey S.; Hicks, Stephanie C. (2021)
    Single-cell RNA-sequencing (scRNA-seq) has made it possible to profile gene expression in tissues at high resolution. An important preprocessing step prior to performing downstream analyses is to identify and remove cells with poor or degraded sample quality using quality control (QC) metrics. Two widely used QC metrics to identify a 'low-quality' cell are (i) if the cell includes a high proportion of reads that map to mitochondrial DNA (mtDNA) encoded genes and (ii) if a small number of genes are detected. Current best practices use these QC metrics independently with either arbitrary, uniform thresholds (e.g. 5%) or biological context-dependent (e.g. species) thresholds, and fail to jointly model these metrics in a data-driven manner. Current practices are often overly stringent and especially untenable on certain types of tissues, such as archived tumor tissues, or tissues associated with mitochondrial function, such as kidney tissue [1]. We propose a data-driven QC metric (miQC) that jointly models both the proportion of reads mapping to mtDNA genes and the number of detected genes with mixture models in a probabilistic framework to predict the low-quality cells in a given dataset. We demonstrate how our QC metric easily adapts to different types of single-cell datasets to remove low-quality cells while preserving high-quality cells that can be used for downstream analyses. Our software package is available at https://bioconductor.org/packages/miQC. Author summary We developed the miQC package to predict the low-quality cells in a given scRNA-seq dataset by jointly modeling both the proportion of reads mapping to mitochondrial DNA (mtDNA) genes and the number of detected genes using mixture models in a probabilistic framework. We demonstrate how our QC metric easily adapts to different types of single-cell datasets to remove low-quality cells while preserving high-quality cells that can be used for downstream analyses.
  • Sasaki, Hiroaki; Kanamori, Takafumi; Hyvärinen, Aapo; Niu, Gang; Sugiyama, Masashi (2018)
    Modes and ridges of the probability density function behind observed data are useful geometric features. Mode-seeking clustering assigns cluster labels by associating data samples with the nearest modes, and estimation of density ridges enables us to find lower-dimensional structures hidden in data. A key technical challenge both in mode-seeking clustering and density ridge estimation is accurate estimation of the ratios of the first- and second-order density derivatives to the density. A naive approach takes a three-step approach of first estimating the data density, then computing its derivatives, and finally taking their ratios. However, this three-step approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator, and division by the estimated density could significantly magnify the estimation error. To cope with these problems, we propose a novel estimator for the density-derivative-ratios. The proposed estimator does not involve density estimation, but rather directly approximates the ratios of density derivatives of any order. Moreover, we establish a convergence rate of the proposed estimator. Based on the proposed estimator, novel methods both for mode-seeking clustering and density ridge estimation are developed, and the respective convergence rates to the mode and ridge of the underlying density are also established. Finally, we experimentally demonstrate that the developed methods significantly outperform existing methods, particularly for relatively high-dimensional data.
  • Cardueae Radiations Grp (2019)
    Classification of tribe Cardueae in natural subtribes has always been a challenge due to the lack of support of some critical branches in previous phylogenies based on traditional Sanger markers. With the aim to propose a new subtribal delimitation, we applied a Hyb-Seq approach to a set of 76 Cardueae species representing all subtribes and informal groups defined in the tribe, targeting 1061 nuclear conserved orthology loci (COS) designed for Compositae and obtaining chloroplast coding regions as by-product of off-target reads. For the extraction of the target nuclear data, we used two strategies, PHYLUCE and HybPiper, and 776 and 1055 COS loci were recovered with each of them, respectively. Additionally, 87 chloroplast genes were assembled and annotated. With three datasets, phylogenetic relationships were reconstructed using both concatenation and coalescent approaches. Phylogenetic analyses of the nuclear datasets fully resolved virtually all nodes with very high support. Nuclear and plastid tree topologies are mostly congruent with a very limited number of incongruent nodes. Based on the well-solved phylogenies obtained, we propose a new taxonomic scheme of 12 monophyletic and morphologically consistent subtribes: Carlininae, Cardopatiinae, Echinopsinae, Dipterocominae (new), Xerantheminae (new), Berardiinae (new), Staehelininae (new), Onopordinae (new), Carduinae (redelimited), Arctiinae (new), Saussureinae (new), and Centaureinae. In addition, we further updated the temporal framework for origin and diversification of these subtribes. Our results highlight the power of Hyb-Seq over Sanger sequencing of a few DNA markers in solving phylogenetic relationships of traditionally difficult groups.
  • Uvarov, Pavel; Kajander, Tommi; Airaksinen, Matti S. (2014)
  • Makela, Miia R.; Sietiö, Outi-Maaria; de Vries, Ronald P.; Timonen, Sari; Hilden, Kristiina (2014)
  • Liang, Zhi-Qiang; Chen, Wei-Tao; Wang, Deng-Qiang; Zhang, Shu-Huan; Wang, Chong-Rui; He, Shun-Ping; Wu, Yuan-An; He, Ping; Xie, Jiang; Li, Chuan-Wu; Merilä, Juha; Wei, Qi-Wei (2019)
    Understanding genetic diversity patterns of endangered species is an important premise for biodiversity conservation. The critically endangered salamander Andrias davidianus, endemic to central and southern mainland in China, has suffered from sharp range and population size declines over the past three decades. However, the levels and patterns of genetic diversity of A. davidianus populations in wild remain poorly understood. Herein, we explore the levels and phylogeographic patterns of genetic diversity of wild-caught A. davidianus using larvae and adult collection with the aid of sequence variation in (a) the mitochondrial DNA (mtDNA) fragments (n = 320 individuals; 33 localities), (b) 19 whole mtDNA genomes, and (c) nuclear recombinase activating gene 2 (RAG2; n = 88 individuals; 19 localities). Phylogenetic analyses based on mtDNA datasets uncovered seven divergent mitochondrial clades (A-G), which likely originated in association with the uplifting of mountains during the Late Miocene, specific habitat requirements, barriers including mountains and drainages and lower dispersal ability. The distributions of clades were geographic partitioned and confined in neighboring regions. Furthermore, we discovered some mountains, rivers, and provinces harbored more than one clades. RAG2 analyses revealed no obvious geographic patterns among the five alleles detected. Our study depicts a relatively intact distribution map of A. davidianus clades in natural species range and provides important knowledge that can be used to improve monitoring programs and develop a conservation strategy for this critically endangered organism.
  • Leavitt, Steven D.; Lumbsch, H. Thorsten; Stenroos, Soili; St Clair, Larry L. (2013)
    Pleistocene climatic fluctuations influenced patterns of genetic variation and promoted speciation across a wide range of species groups. Lichens are commonly found in habitats that were directly impacted by glacial cycles; however, the role of Pleistocene climate in driving speciation in most lichen symbionts remains unclear. This uncertainty is due in part to limitations in our ability to accurately recognize independently evolving lichen-forming fungal lineages and a lack of relevant fossil calibrations. Using a coalescent-based species tree approach, we estimated divergence times for two sister clades in the genus Xanthoparmelia (Parmeliaceae) restricted to western North America. We assessed the influence of two different species circumscription scenarios and various locus-specific rates of molecular evolution on divergence estimates. Species circumscriptions were validated using the program BP&P. although speciation was generally supported in both scenarios, divergence times differed between traditional species circumscriptions and those based on genetic data, with more recent estimates resulting from the former. Similarly, rates of evolution for different loci resulted in variable divergence time estimates. However, our results unambiguously indicate that diversification in the sampled Xanthoparmelia clades occurred during the Pleistocene. Our study highlights the potential impact of ambiguous species circumscriptions and uncertain rates of molecular evolution on estimating divergence times within a multilocus species tree framework
  • Tringali, Angela; Bowman, Reed; Husby, Arild (2015)
    Sexually dimorphic plumage coloration is widespread in birds and is generally thought to be a result of sexual selection for more ornamented males. Although many studies find an association between coloration and fitness related traits, few of these simultaneously examine selection and inheritance. Theory predicts that sex-linked genetic variation can facilitate the evolution of dimorphism, and some empirical work supports this, but we still know very little about the extent of sex linkage of sexually dimorphic traits. We used a longitudinal study on juvenile Florida scrub-jays (Aphelocoma coerulescens) to estimate strength of selection and autosomal and Z-linked heritability of mean brightness, UV chroma, and hue. Although plumage coloration signals dominance in juveniles, there was no indication that plumage coloration was related to whether or not an individual bred or its lifetime reproductive success. While mean brightness and UV chroma are moderately heritable, hue is not. There was no evidence for sex-linked inheritance of any trait with most of the variation explained by maternal effects. The genetic correlation between the sexes was high and not significantly different from unity. These results indicate that evolution of sexual dimorphism in this species is constrained by low sex-linked heritability and high intersexual genetic correlation.