Browsing by Subject "MEIGEN"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Radenkovic, Snezana; Velickovic, Nevena; Ssymank, Axel; Vidakovic, Dragana Obreht; Djan, Mihajla; Ståhls, Gunilla; Veselic, Sanja; Vujic, Ante (2018)
    An ongoing study of the genus Merodon Meigen, 1803 in the Republic of South Africa (RSA) has revealed the existence of new species related to M. melanocerus Bezzi, 1915. The M. melanocerus subgroup belongs to the Afrotropical lineage of the M. desuturinus group. Revision of all available material from museums and detailed analyses of newly -collected specimens from our own expeditions to RSA resulted in delimitation of five species: M. capensis Hurkmans sp. n., M. commutabilis Radenkovic et Vujic sp. n., M. drakonis Vujic et Radenkovic sp. n., M. flavocerus Hurkmans sp. n. and M. melanocerus. In addition to classical morphological characters, sequences of the mitochondrial COI gene are provided for four related taxa. Results of molecular phylogenetic analyses supports monophyly of the M. desuturinus group and confirmed delimitation between species. Links between Palaearctic and Afrotropical faunas of this group, as well as possible evolutionary paths, are discussed. Based on phylogenetic analyses, four lineages (putative subgenera) have been recognized within the genus Merodon; besides the three previously established ones, albifrons+desuturinus, aureus (sensu lato) and avidus-nigritarsis, one new lineage named natans is distinguished.
  • Acanski, Jelena; Vujic, Ante; Djan, Mihajla; Obreht Vidakovic, Dragana; Ståhls, Gunilla; Radenkovic, Snezana (2016)
    Several recent studies have detected and described complexes of cryptic and sibling species in the genus Merodon (Diptera, Syrphidae). One representative of these complexes is the Merodon avidus complex that contains four sibling species, which have proven difficult to distinguish using traditional morphological characters. In the present study, we use two geometric morphometric approaches, as well as molecular characters of the 5' -end of the mtDNA COI gene, to delimit sibling taxa. Analyses based on these data were used to strengthen species boundaries within the complex, and to validate the status of a previously-recognized cryptic taxon from Lesvos Island (Greece), here described as Merodon megavidus Vujic & Radenkovic sp. nov. Geometric morphometric results of both wing and surstylus shape confirm the present classification for three sibling species-M. avidus (Rossi, 1790), M. moenium Wiedemann in Meigen, 1822 and M. ibericus Vujic, 2015-and, importantly, clearly discriminate the newly-described taxon Merodon megavidus sp. nov. In addition to our geometric morphometric results, supporting characters were obtained from molecular analyses of mtDNA COI sequences, which clearly differentiated M. megavidus sp. nov. from the other members of the M. avidus complex. Molecular analyses revealed that the earliest divergence of M. ibericus occurred around 800 ky BP, while the most recent separation happened between M. avidus and M. moenium around 87 ky BP.
  • Vujic, Ante; Ståhls, Gunilla; Radenkovic, Snezana (2019)
    For the first time in more than 30 years, a new European hoverfly genus has been discovered, Katara gen. nov. Its type species Katara connexa sp. nov. (Diptera: Syrphidae) is described from the Pindos Mountains (Greece), and the systematic position of the monotypic taxon within the tribe Rhingiini is analysed using morphological and molecular data. Phylogenetic analyses resolved Katara connexa gen. et sp. nov. as sister taxon to Pelecocera latifrons. We assert based on the molecular phylogenetic results and the morphological distinctness of Pelecocera latifrons that this taxon merits a generic rank, thus we erect the genus Pseudopelecocera gen. nov. and also place Pelecocera persiana in this new genus based on shared characteristics. Based on our results, we place Chamaesyrphus in subgeneric rank and as a sister group to the nominal subgenus Pelecocera. We provide an identification key to the Rhingiini genera. Our phylogenetic analyses recovered all speciose Rhingiini genera as monophyletic and support existence of three main lineages within the tribe: (1) genus Rhingia with two groups, Palaearctic+Neotropical and Afrotropical taxa, (2) genus Cheilosia with its subgenera, and (3) lineage with remaining genera (Pseudopelecocera gen. nov., Katara gen. nov., Ferdinandea, Psarochilosia, Psarus, Portevinia and Pelecocera).
  • Acanski, Jelena; Vujic, Ante; Sasic Zoric, Ljiljana; Radenkovi, Snezana; Markov, Zlata; Ståhls, Gunilla (2022)
    In this study, we examined the morphology, genetics and distribution of the members of the Merodon chalybeus subgroup (M. aureus species group): M. chalybeus Wiedemann in Meigen, 1822, M. minutus Strobl, 1893 and M. robustus Veselić, Vujić & Radenković, 2017. Two of the species, M. chalybeus and M. minutus, are morphologically very similar and often misidentified in the literature. Here, by employing an integrative taxonomic approach we provide strong evidence for the separation of M. chalybeus and M. minutus. Our results show their clear allopatric distribution: M. minutus on the Balkan Peninsula, Sicily, Sardinia and Corsica, while M. chalybeus is a western Mediterranean species distributed on the Iberian Peninsula and northwest Africa. Data on the distribution of M. robustus were updated, with new records from Cyprus, Israel and Turkey, besides its type locality (Samos in Greece). We provide evidence for M. chalybeus and M. minutus representing a species complex, named the M. chalybeus complex, which together with M. robustus constitute the M. chalybeus subgroup.
  • Sasic, Ljiljana; Acanski, Jelena; Vujic, Ante; Ståhls, Gunilla; Radenkovic, Snezana; Milic, Dubravka; Vidakovic, Dragana Obreht; Dan, Mihajla (2016)
    The Merodon aureus species group (Diptera: Syrphidae: Eristalinae) comprises a number of different sub-groups and species complexes. In this study we focus on resolving the taxonomic status of the entity previously identified as M. cinereus B, here identified as M. atratus species complex. We used an integrative approach based on morphological descriptions, combined with supporting characters that were obtained from molecular analyses of the mitochondrial cytochrome c oxidase I gene as well as from geometric morphometry of wing and surstylus shapes and environmental niche comparisons. All applied data and methods distinguished and supported three morphologically cryptic species: M. atratus stat. nov., M. virgatus sp. nov. and M. balkanicus sp. nov., which constitute the M. atratus species complex. We present an identification key for the sub-groups and species complexes of the M. aureus species group occurring in Europe, describe the taxa and discuss the utility of the applied methods for species delimitation. The estimated divergence times for the species splits of these taxa coincide with the Pleistocene Gunz-Mindel interglaciation and the Great interglaciation (between the Ris and Mindel glacial periods).
  • Zoric, Ljiljana Sasic; Acanski, Jelena; Vujic, Ante; Stahls, Gunilla; Djan, Mihajla; Radenkovic, Snezana (2020)
    The taxonomy of Merodon dobrogensis Bradescu, 1982 (Diptera: Syrphidae) species subgroup was reviewed. Multiple data sources (morphology, geometric morphometry of wings and surstylus, molecular data, and distributional data) were used to investigate the species subgroup in the manner of integrative taxonomy. Merodon dobrogensis Bradescu, 1982 and M. puniceus Vujic, Radenkovic, and Perez-Banon, 2011 are supported as distinct species belonging to the M. dobrogensis species complex within the M. dobrogensis species subgroup. Additionally, evidence is presented for the description of a new species, M. rojoi Radenkovic and Vujic new species, with a distribution in mainland Greece, the Greek island Euboea, and the Peloponnese. A short diagnosis is provided for the M. aureus species group, the M. dobrogensis species subgroup, and the newly defined M. dobrogensis species complex, in addition to a description of the new species, with drawings and photographs of adult morphology.
  • Vujic, Ante; Likov, Laura; Radenkovic, Snezana; Tubic, Natasa Kocis; Djan, Mihajla; Sebic, Anja; Perez-Banon, Celeste; Barkalov, Anatolij; Hayat, Rustem; Rojo, Santos; Andric, Andrijana; Stahls, Gunilla (2020)
    The phytophagous hoverfly genus Merodon Meigen, 1803 (Diptera, Syrphidae), which comprises more than 160 species distributed in Palaearctic and Afrotropical regions, can be differentiated into multiple groups of species that harbor high levels of hidden diversity. In this work, the serrulatus species group of Merodon is revised, providing an illustrated key to species, a detailed discussion on the taxonomic characters and a morphological diagnosis, including also the first data about the preimaginal morphology of this species group. The study includes characteristics of the 13 species of the M. serrulatus group, along with the available distributional data. Moreover, descriptions are provided for seven new species, namely M. defectus Vujic, Likov & Radenkovic sp. nov., M. disjunctus Vujic, Likov & Radenkovic sp. nov., M. medium Vujic, Likov & Radenkovic sp. nov., M. nigrocapillatus Vujic, Likov & Radenkovk sp. nov., M. nigropunctum Vujic, Likov & Radenkovic sp. nov., M. opacus Vujic, Likov & Radenkovk sp. nov., and M. trianguloculus Vujic, Likov & Radenkovk sp. nov. In addition, the taxa M. serrulatus (Wiedemann in Meigen, 1822), M. bequaerti Hurkmans, 1993, M. birsutus Sack, 1913, M. kawamurae Matsumura, 1916, M. sacki (Paramonov, 1936) and M. sophron Hurkmans, 1993 are redefined and redescribed. Following a detailed study of the type material sourced from different entomological collections, the status of all available taxa related to M. serrulatus is revised and a new synonymy is proposed: M. tener Sack, 1913 syn. nov. (junior synonym of M. serrulatus). The identity of M. trizonus (Szilady, 1940) could not be assessed as the type specimens are lost. Thus, the name M. trizonus is considered as nomen dubium. The monophyly and composition of this species group are assessed through Maximum Parsimony and Maximum Likelihood analyses of the mitochondrial COI and nuclear 28S rRNA gene sequences.
  • Ståhls, Gunilla; Barkalov, Anatolij V. (2017)
    The Palaearctic species of the Cheilosia caerulescens group (Diptera: Syrphidae) are revised in this work. The species group belongs to the genus Cheilosia subgenus Taeniocheilosia Oldenberg. One new species is described from north Caucasus, Cheilosia (Taeniocheilosia) circassica sp. n. Cheilosia primulae Hering is established as a junior synonym of Cheilosia laeviventris Loew. Four lectotype designations are made. The species of the Cheilosia caerulescens group are redescribed and illustrated, and a table of diagnostic characters and an identification key to species are provided. MtDNA COI barcodes were generated for several specimens of C. (T.) caerulescens Meigen and other Cheilosia (Taeniocheilosia) and Cheilosia s. str. taxa. Parsimony and maximum likelihood analyses did not place the morphologically similar C. hercyniae Loew in the C. caerulescens group but among other Cheilosia (Taeniocheilosia) taxa. The following eight taxa are included in the Cheilosia (T.) caerulescens group of species: Cheilosia armeniaca Stackelberg, 1960, C. caerulescens caerulescens (Meigen, 1822), C. caerulescens calculosa Skufjin, 1977, C. circassica sp. n., C. herculana Bradescu, 1982, C. kerteszi Szilady, 1938, C. laeviventris Loew, 1857, and C. venosa Loew, 1857.
  • Djan, Mihajla; Stahls, Gunilla; Velickovic, Nevena; Acanski, Jelena; Vidakovic, Dragana Obreht; Rojo, Santos; Perez-Banon, Celeste; Radenkovic, Snezana; Vujic, Ante (2020)
    Hoverflies (Syrphidae) represent an insect group of great importance in ecosystems and indicators of ecosystem change. The genus Merodon Meigen, 1803 (tribe Merodontini) is one of the most species-rich hoverfly genera, distributed across the Palaearctic and Afrotropical regions. The genus Merodon Meigen, 1803 is less diverse in the Afrotropical Region than in the Palaearctic (11 versus 160 known species). An ongoing study of the genus Merodon in Africa has revealed the existence of two new species into the taxon previously known as Merodon planifacies Bezzi, 1915. The M. planifacies subgroup belongs to the Afrotropical lineage of the Merodon desuturinus group. Morphological analysis of male genitalia has classified the available specimens of the M. planifacies taxon into two sets: the first one corresponds to M. planifacies with folded theca, while the other with smooth theca, later named Merodon capi complex was found exclusively at the Drakensberg mountains in the Republic of South Africa, specifically in the Cathedral Peak National Park and the Royal Natal National Park. Further, molecular and morphometric evidences revealed two cryptic taxa within this complex: M. capi sp. nov. Vujic et Radenkovic and Merodon roni sp. nov. Radenkovic et Vujic. (c) 2020 Elsevier GmbH. All rights reserved.