Browsing by Subject "METAL-ORGANIC FRAMEWORKS"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Zhang, Wenzhong; Hietala, Sami; Khryashchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto (2018)
    The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The “tetrad effect” is observed from a dilute Ln3+ mixture. However, smaller Ln3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
  • Lan, Hangzhen; Zhang, Wenzhong; Smått, Jan-Henrik; Koivula, Risto; Hartonen, Kari; Riekkola, Marja-Liisa (2019)
    Mesoporous silica-coated solid phase microextraction (SPME) Arrow systems were developed for capturing of low-molecular-weight aliphatic amines (LMWAAs) from complicated sample matrices. Specifically, silicas of type MCM-41, SBA-15 and KIT-6 were chosen as substrates to afford size-exclusion selectivity. They possess ordered multidimensional pore-channel structures and mesopore sizes between 3.8 and 8.2 nm. Their surface acidity was enhanced by grafting them with a layer of titanium hydrogenphosphate (-TP). This enhanced the chemical selectivity for basic LMWAAs. The siliceous coatings increased the extraction of ethylamine, diethylamine (DEA) and triethylamine (TEA) by factors of 18.6–102.5, 4.8–10.8 and 2.6–4.0, respectively, when compared to the commercial SPME Arrow with polydimethylsiloxane/divinylbenzene coating. Among them, the MCM-41 and MCM-41-TP coated SPME Arrows demonstrated exceptional selectivity towards LMWAAs that were quantified by gas chromatography-mass spectrometry (GC-MS). The total peak area ratios of LMWAAs/ten competing compounds were 25.4 and 36.3, respectively. The extraction equilibrium was reached within 20–30 min. The MCM-41 and MCM-41-TP derived SPME Arrows gave very similar results (18.4 ± 2.1–376 ± 12 ng g−1 to DEA and TEA) when applied to urban mushroom samples. SPME Arrow with MCM-41 coatings followed by GC-MS was applied also to the analysis of atmospheric air and urine samples resulting in high selectivity due to the size and mesoporous structure of the functionalized silica, and its chemical interactions with the LMWAAs.
  • Grosjean, Sylvain; Hodapp, Patrick; Hassan, Zahid; Woell, Christof; Nieger, Martin; Bräse, Stefan (2019)
    Modular synthesis of structurally diverse functionalized azobiphenyls and azoterphenyls for the realization of optically switchable materials has been described. The corresponding synthesis of azobiphenyls and azoterphenyls by stepwise Mills/Suzuki-Miyaura cross-coupling reaction, proceeds with high yields and provides facile access to a library of functionalized building blocks. The synthetic methods described herein allow combining several distinct functional groups within a single unit, each intended for a specific task, such as 1) the -N=N- azobenzene core as a photoswitchable moiety, 2) aryls and heteroaryls, functionalized with carboxylic acids or pyridine at its peripheries, as coordinating moieties and 3) varying substitution, size and length of the backbone for adaptability to specific applications. These specifically designed azobiphenyls and azoterphenyls provide modular bricks, potentially useful for the assembly of a variety of polymers, molecular containers and coordination networks, offering a high degree of molecular functionality. Once integrated into materials, the azobenzene system, as a side group on the organic linker backbone, can be exploited for remotely controlling the structural, mechanical or physical properties, thus being applicable for a broad variety of 'smart' applications.
  • Maleki, Aziz; Shahbazi, Mohammad-Ali; Alinezhad, Vajiheh; Santos, Hélder A. (2020)
    The progressive development of zeolitic imidazolate frameworks (ZIFs), as a subfamily of metal‐organic frameworks (MOFs), and their unique features, including tunable pore size, large surface area, high thermal stability, and biodegradability/biocompatibility, have made them attractive in the field of biomedicine, especially for drug delivery and biomineralization applications. The high porosity of ZIFs gives them the opportunity for encapsulating a high amount of therapeutic drugs, proteins, imaging cargos, or a combination of them to construct advanced multifunctional drug delivery systems (DDSs) with combined therapeutic and imaging capabilities. This review summarizes recent strategies on the design and fabrication of ZIF‐based nansystems and their exploration in the biomedical field. First, recent developments for the adjustment of particle size, functionality, and morphology of ZIFs are discussed, which are important for achieving optimized therapeutic/theranostic nanosystems. Second, recent trends on the application of ZIF nanocarriers for the loading of diverse cargos, including anticancer medicines, antibiotic drugs, enzymes, proteins, photosensitizers, as well as imaging and photothermal agents, are investigated in order to understand how multifunctional DDSs can be designed based on the ZIF nanoparticles to treat different diseases, such as cancer and infection. Finally, prospects on the future research direction and applications of ZIF‐based nanomedicines are discussed.