Sort by: Order: Results:

Now showing items 1-5 of 5
  • Sabrekov, A. F.; Glagolev, M. V.; Alekseychik, P. K.; Smolentsev, B. A.; Terentieva, I. E.; Krivenok, L. A.; Maksyutov, S. S. (2016)
    This study combines a literature survey and field observation data in an ad initio attempt to construct a process-based model of methane sink in upland soils including both the biological and physical aspects of the process. Comparison is drawn between the predicted sink rates and chamber measurements in several forest and grassland sites in the southern part of West Siberia. CH4 flux, total respiration, air and soil temperature, soil moisture, pH, organic content, bulk density and solid phase density were measured during a field campaign in summer 2014. Two datasets from literature were also used for model validation. The modeled sink rates were found to be in relatively good correspondence with the values obtained in the field. Introduction of the rhizospheric methanotrophy significantly improves the match between the model and the observations. The Q10 values of methane sink observed in the field were 1.2-1.4, which is in good agreement with the experimental results from the other studies. Based on modeling results, we also conclude that soil oxygen concentration is not a limiting factor for methane sink in upland forest and grassland ecosystems.
  • Tupek, B.; Minkkinen, K.; Pumpanen, J.; Vesala, T.; Nikinmaa, E. (2015)
  • Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T. (2015)
    Stable isotope mixing models in aquatic ecology require delta C-13 values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the delta C-13 ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the delta C-13 values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell delta C-13 values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5 +/- 4.0%) than bacteria (7.3 +/- 0.8%) or terrestrial matter (3.9 +/- 1.7%). Our measurements revealed that the delta C-13 values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the delta C-13 values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7 +/- 1.1 parts per thousand for Chlorophyceae and Cyanophyceae, and -6.1 +/- 1.7 parts per thousand for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3 +/- 1.3 parts per thousand, -8.0 +/- 4.4 parts per thousand, and -3.4 +/- 1.4 parts per thousand delta C-13 difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6 +/- 1.2 parts per thousand. Based on these results, the delta C-13 values of total lipids and biomarker fatty acids can be used to determine the delta C-13 values of bulk phytoplankton, bacteria or terrestrial matter with +/- 1.4 parts per thousand uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of delta C-13 values for selected biomarker fatty acids coupled with established isotopic differences, offers a promising way to determine taxa-specific bulk delta C-13 values for the phytoplankton, bacteria, and terrestrial detritus embedded within mixed seston.
  • Putkinen, Anuliina; Siljanen, Henri M. P.; Laihonen, Antti; Paasisalo, Inga; Porkka, Kaija; Tiirola, Marja; Haikarainen, Iikka; Tenhovirta, Salla; Pihlatie, Mari (2021)
    Methane (CH4) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4-producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4-producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.
  • Korrensalo, Aino; Mannisto, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina (2018)
    We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAI(TOT)) and leaf area of aerenchymatous plant species (LAI(AER)). Methane emissions ranged from -309 to 1254 mg m(-2) d(-1). Although methane fluxes increased with increasing peat temperature, LAI(TOT) and LAI(AER), they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAI(AER) and LAI(TOT) in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.