Browsing by Subject "MICROCYSTIS-AERUGINOSA"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Teikari, Jonna E.; Hou, Shengwei; Wahlsten, Matti; Hess, Wolfgang R.; Sivonen, Kaarina (2018)
    Salinity is an important abiotic factor controlling the distribution and abundance of Nodularia spumigena, the dominating diazotrophic and toxic phototroph, in the brackish water cyanobacterial blooms of the Baltic Sea. To expand the available genomic information for brackish water cyanobacteria, we sequenced the isolate Nodularia spurn/germ UHCC 0039 using an Illumina-SMRT hybrid sequencing approach, revealing a chromosome of 5,294,286 base pairs (bp) and a single plasmid of 92,326 bp. Comparative genomics in Nostocales showed pronounced genetic similarity among Nodularia spumigena strains evidencing their short evolutionary history. The studied Baltic Sea strains share similar sets of CRISPR-Cas cassettes and a higher number of insertion sequence (IS) elements compared to Nodularia spumigena CENA596 isolated from a shrimp production pond in Brazil. Nodularia spumigena UHCC 0039 proliferated similarly at three tested salinities, whereas the lack of salt inhibited its growth and triggered transcriptome remodeling, including the up-regulation of five sigma factors and the down-regulation of two other sigma factors, one of which is specific for strain UHCC 0039. Down-regulated genes additionally included a large genetic region for the synthesis of two yet unidentified natural products. Our results indicate a remarkable plasticity of the Nodularia salinity acclimation, and thus salinity strongly impacts the intensity and distribution of cyanobacterial blooms in the Baltic Sea.
  • Sivonen, Kaarina; Leikoski, Niina; Fewer, David P.; Jokela, Jouni (2010)
  • Omidi, Azam; Pflugmacher, Stephan; Kaplan, Aaron; Kim, Young Jun; Esterhuizen, Maranda (2021)
    The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
  • Martins, Joana; Leikoski, Niina; Wahlsten, Matti; Azevedo, Joana; Antunes, Jorge; Jokela, Jouni; Sivonen, Kaarina; Vasconcelos, Vitor; Fewer, David P.; Leão, Pedro N. (2018)
    Cyanobactins are a family of linear and cyclic peptides produced through the post-translational modification of short precursor peptides. A mass spectrometry-based screening of potential cyanobactin producers led to the discovery of a new prenylated member of this family of compounds, sphaerocyclamide (1), from Sphaerospermopsis sp. LEGE 00249. The sphaerocyclamide biosynthetic gene cluster (sph) encoding the novel macrocyclic prenylated cyanobactin, was sequenced. Heterologous expression of the sph gene cluster in Escherichia coli confirmed the connection between genomic and mass spectrometric data. Unambiguous establishment of the orientation and site of prenylation required the full structural elucidation of 1 using Nuclear Magnetic Resonance (NMR), which demonstrated that a forward prenylation occurred on the tyrosine residue. Compound 1 was tested in pharmacologically or ecologically relevant biological assays and revealed moderate antimicrobial activity towards the fouling bacterium Halomonas aquamarina CECT 5000.
  • Mantzouki, Evanthia; Lurling, Miquel; Fastner, Jutta; Domis, Lisette de Senerpont; Wilk-Wozniak, Elzbieta; Koreiviene, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krzton, Wojciech; Walusiak, Edward; Karosiene, Jurate; Kasperoviciene, Jurate; Savadova, Ksenija; Vitonyte, Irma; Cillero-Castro, Carmen; Budzynska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosinska, Joanna; Szelag-Wasielewska, Elzbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pelechata, Aleksandra; Pelechaty, Mariusz; Kokocinski, Mikolaj; Garcia-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Parreno Duque, David; Fernandez-Moran, Elisabeth; Karakaya, Nusret; Haggqvist, Kerstin; Demir, Nilsun; Beklioglu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Ugur; Bezirci, Gizem; Tavsanoglu, Ulku Nihan; Ozhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Ozden; Yang, Yang; Salmi, Pauliina; Arvola, Lauri (2018)
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.