Browsing by Subject "MICROGLIAL ACTIVATION"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Chen, Zuyue; Wei, Hong; Sagalajev, Boriss; Koivisto, Ari; Pertovaara, Antti (2019)
    Background: The central amygdaloid nucleus (CeA) is involved in processing and descending regulation of pain. Amygdaloid mechanisms underlying pain processing and control are poorly known. Here we tested the hypothesis that perioperative CeA administration of tetrapentylammonium (TPA), a non-selective THIK-1 channel blocker and thereby inhibitor of microglia, attenuates development of chronic neuropathic pain and comorbid anxiety-like behavior. Methods: Rats with a spared nerve injury (SNI) model of neuropathy or sham operation had a chronic cannula for drug microinjections into the CeA or a control injection site. Monofilament test was used to evaluate pain, and light-dark box (LDB) to assess anxiety. Results: Perioperative CeA treatment with TPA (30 mu g/day up to the third postoperative day, D3) significantly attenuated the development of pain and anxiety-like behavior. In the late phase (> D14), CeA administration of TPA (3-30 mu g) failed to influence pain. Perioperative minocycline (microglia inhibitor; 25 mu g), MK-801 (an N-Methyl-D-aspartate receptor antagonist; 0.1 mu g), vehicle or TPA in a control injection site failed to attenuate pain development. Conclusions: Perioperative treatment of the CeA with TPA delayed development of neuropathic pain and comorbid anxiety-like behavior, while TPA treatment failed to influence maintenance of established neuropathic pain. The failures to attenuate pain development with CeA administrations of minocycline or MK-801 do not support the hypothesis that the TPA-induced prophylactic effect was due to inhibition of amygdaloid microglia or N-methyl-D-aspartate receptors. While TPA in the CeA proved to have a prophylactic effect on SNI-induced pain behavior, the underlying mechanism still remains to be studied. (c) 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
  • Lindgren, Noora; Tuisku, Jouni; Vuoksimaa, Eero; Helin, Semi; Karrasch, Mira; Marjamäki, Päivi; Kaprio, Jaakko; Rinne, Juha O. (2020)
    Alzheimer's disease is associated with chronic response of innate immune system, referred as neuroinflammation. PET radioligands binding to the 18kDa translocator protein are potential biomarkers of neuroinflammation. Translocator protein PET studies in mild cognitive impairment and Alzheimer's disease have indicated controversial results, possibly reflecting interindividual variation and heterogeneity of study populations. We controlled for genetic and environmental effects by studying twin pairs discordant for episodic memory performance. Episodic memory impairment is a well-known cognitive hallmark of early Alzheimer's disease process. Eleven same-sex twin pairs (four monozygotic pairs, six female pairs, age 72-77 years) underwent [C-11]N-acetyl-N-(2-methoxybenzyl)-2-phenoxy-5-pyridinamine ([C-11]PBR28) PET imaging, structural magnetic resonance imaging and neuropsychological testing in 2014-17. Main PET outcome was the volume-weighted average standardized uptake value of cortical regions vulnerable to Alzheimer's disease pathology. Ten pairs were discordant for episodic memory performance. In the eight pairs with identical translocator protein genotype, twins with poorer episodic memory had similar to 20% higher cortical [C-11]PBR28 binding compared with their better-performing co-twins (mean intra-pair difference 0.21 standardized uptake value, 95% confidence interval 0.05-0.37, P = 0.017). The result remained the same when including all discordant pairs and controlling for translocator protein genotype. Increased translocator protein PET signal suggests that increased microglial activation is associated with poorer episodic memory performance. Twins with worse episodic memory performance compared with their co-twins had on average 20% higher uptake of the neuroinflammatory marker translocator protein PET tracer (11)[C-11]PBR28. The findings support a negative association between neuroinflammation and episodic memory and the use of translocator protein positron emission tomography as a useful indicator of Alzheimer's disease process.
  • Okuneva, Olesya; Li, Zhilin; Korber, Inken; Tegelberg, Saara; Joensuu, Tarja; Tian, Li; Lehesjoki, Anna-Elina (2016)
    Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited childhood-onset neurodegenerative disorder, characterized by myoclonus, seizures, and ataxia. Mutations in the cystatin B gene (CSTB) underlie EPM1. The CSTB-deficient (Cstb(-/-)) mouse model recapitulates key features of EPM1, including myoclonic seizures. The mice show early microglial activation that precedes seizure onset and neuronal loss and leads to neuroinflammation. We here characterized the inflammatory phenotype of Cstb(-/-) mice in more detail. We found higher concentrations of chemokines and pro-inflammatory cytokines in the serum of Cstb(-/-) mice and higher CXCL13 expression in activated microglia in Cstb(-/-) compared to control mouse brains. The elevated chemokine levels were not accompanied by blood-brain barrier disruption, despite increased brain vascularization. Macrophages in the spleen and brain of Cstb(-/-) mice were predominantly pro-inflammatory. Taken together, these data show that CXCL13 expression is a hallmark of microglial activation in Cstb(-/-)mice and that the brain inflammation is linked to peripheral inflammatory changes, which might contribute to the disease pathology of EPM1.
  • Choo, Xin Yi; Liddell, Jeffrey R.; Huuskonen, Mikko T.; Grubman, Alexandra; Moujalled, Diane; Roberts, Jessica; Kysenius, Kai; Patten, Lauren; Quek, Hazel; Oikari, Lotta E.; Duncan, Clare; James, Simon A.; McInnes, Lachlan E.; Hayne, David J.; Donnelly, Paul S.; Pollari, Eveliina; Vähätalo, Suvi; Lejavova, Katarina; Kettunen, Mikko; Malm, Tarja; Koistinaho, Jari; White, Anthony R.; Kanninen, Katja M. (2018)
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex Cu-II(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of Cu-II(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). Cu-II(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of Cu-II(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.
  • Blom, Tea; Schmiedt, Mia-Lisa; Wong, Andrew M.; Kyttälä, Aija; Soronen, Jarkko; Jauhiainen, Matti; Tyynela, Jaana; Cooper, Jonathan D.; Jalanko, Anu (2013)
  • Lisboa, S. F.; Issy, A. C.; Biojone, C.; Montezuma, K.; Fattori, V.; Del-Bel, E. A.; Guimaraes, F. S.; Cunha, F. Q.; Verri, W. A.; Joca, S. R. L. (2018)
    Preclinical and clinical evidence suggests pro-inflammatory cytokines might play an important role in the neurobiology of schizophrenia and stress-related psychiatric disorders. Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines and it is widely expressed in brain regions involved in emotional regulation. Since IL-18 involvement in the neurobiology of mental illnesses, including schizophrenia, remains unknown, this work aimed at investigating the behavior of IL-18 null mice (KO) in different preclinical models: 1. the prepulse inhibition test (PPI), which provides an operational measure of sensorimotor gating and schizophrenic-like phenotypes; 2. amphetamine-induced hyperlocomotion, a model predictive of antipsychotic activity; 3. resident intruder test, a model predictive of aggressive behavior. Furthermore, the animals were submitted to models used to assess depressive- and anxiety-like behavior. IL-18KO mice showed impaired baseline PPI response, which was attenuated by D-amphetamine at a dose that did not modify PPI response in wild-type (WT) mice, suggesting a hypodopaminergic prefrontal cortex function in those mice. D-Amphetamine, however, induced hyperlocomotion in IL-18KO mice compared to their WT counterparts, suggesting hyperdopaminergic activity in the midbrain. Moreover, IL-18KO mice presented increased basal levels of IL-1 beta levels in the hippocampus and TNF-alpha in the prefrontal cortex, suggesting an overcompensation of IL-18 absence by increased levels of other proinflammatory cytokines. Although no alteration was observed in the forced swimming or in the elevated plus maze tests in naive IL-18KO mice, these mice presented anxiogenic-like behavior after exposure to repeated forced swimming stress. In conclusion, deletion of the IL-18 gene resembled features similar to symptoms observed in schizophrenia (positive and cognitive symptoms, aggressive behavior), in addition to increased susceptibility to stress. The IL-18KO model, therefore, could provide new insights into how changes in brain immunological homeostasis induce behavioral changes related to psychiatric disorders, such as schizophrenia.
  • Savolainen, Mari H.; Albert, Katrina; Airavaara, Mikko; Myohänen, Timo T. (2017)
    Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble alpha-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.
  • Anttila, Jenni E.; Pöyhönen, Suvi; Airavaara, Mikko (2019)
    A stroke affecting the somatosensory pathway can trigger central post-stroke pain syndrome (CPSP). The symptoms often include hyperalgesia, which has also been described in rodents after the direct damage of the thalamus. Previous studies have shown that hemorrhagic stroke or ischemia caused by vasoconstriction in the thalamus induces increased pain sensitivity. We investigated whether inducing secondary damage in the thalamus by a cortical stroke causes similar pain hypersensitivity as has previously been reported with direct ischemic injury. We induced a focal cortical ischemia-reperfusion injury in male rats, quantified the amount of secondary neurodegeneration in the thalamus, and measured whether the thalamic neurodegeneration is associated with thermal or mechanical hypersensitivity. After one month, we observed extensive neuronal degeneration and found approximately 40% decrease in the number of NeuN+ cells in the ipsilateral thalamus. At the same time, there was a massive accumulation-a 30-fold increase-of phagocytic cells in the ipsilateral thalamus. However, despite the evident damage in the thalamus, we did not observe thermal or mechanical sensitization. Thus, thalamic neurodegeneration after cortical ischemia-reperfusion does not induce CPSP-like symptoms in rats, and these results suggest that direct ischemic damage is needed for CPSP induction. Despite not observing hyperalgesia, we investigated whether administration of cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) into the ipsilateral thalamus would reduce the secondary damage. We gave a single injection (10 mu g) of recombinant CDNF or MANF protein into the thalamus at 7 days post-stroke. Both CDNF and MANF treatment promoted the functional recovery but had no effect on the neuronal loss or the amount of phagocytic cells in the thalamus.