Sort by: Order: Results:

Now showing items 1-5 of 5
  • Väliviita, Jussi; Savelainen, Matti; Talvitie, Marianne; Kurki-Suonio, Hannu; Rusak, Stanislav (2012)
  • Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, E.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L. -Y; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Tuovinen, J.; Valiviita, J. (2014)
  • Planck Collaboration; Aghanim, N.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J. (2020)
    We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatially-flat 6-parameter Lambda CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base Lambda CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/- 0.001, baryon density Omega (b)h(2)=0.0224 +/- 0.0001, scalar spectral index n(s)=0.965 +/- 0.004, and optical depth tau =0.054 +/- 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/- 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-Lambda CDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H-0=(67.4 +/- 0.5) km s(-1) Mpc(-1); matter density parameter Omega (m)=0.315 +/- 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/- 0.006. We find no compelling evidence for extensions to the base-Lambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N-eff=2.99 +/- 0.17, in agreement with the Standard Model prediction N-eff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)<0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/- 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w(0)=-1.03 +/- 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r(0.002)<0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-CDM cosmology are in excellent agreement with observations. The Planck base-Lambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
  • Planck Collaboration; Akrami, Y.; Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J. (2020)
    We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/- 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, r(0.002)<0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)<0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V(phi) <0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(-1)k less than or similar to 0.2 Mpc(-1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.
  • Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Dore, O.; Dupac, X.; Ensslin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Keihänen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J. (2015)
    Any variation in the fundamental physical constants, more particularly in the fine structure constant, a, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift z - 10(3) by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, H-0. In addition to a, we can set a constraint on the variation in the mass of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Delta alpha/alpha = (3.6 +/- 3.7) x 10(-3) and Delta m(e)/m(e) = (4 +/- 11) x 10(-3) at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation in a (corresponding to a gradient across our Hubble volume) is constrained to be delta alpha/alpha = (-2.4 +/- 3.7) x 10(-2).