Browsing by Subject "MISMATCH NEGATIVITY MMN"

Sort by: Order: Results:

Now showing items 1-20 of 20
  • Thiede, Anja; Virtala, Paula; Ala-Kurikka, Iina; Partanen, Eino; Huotilainen, Minna; Mikkola, Kaija; Leppänen, Paavo HT; Kujala, Teija (2019)
    Objective: Identifying early signs of developmental dyslexia, associated with deficient speech-sound processing, is paramount to establish early interventions. We aimed to find early speech-sound processing deficiencies in dyslexia, expecting diminished and atypically lateralized event-related potentials (ERP) and mismatch responses (MMR) in newborns at dyslexia risk. Methods: ERPs were recorded to a pseudoword and its variants (vowel-duration, vowel-identity, and syllable-frequency changes) from 88 newborns at high or no familial risk. The response significance was tested, and group, laterality, and frontality effects were assessed with repeated-measures ANOVA. Results: An early positive and right-lateralized ERP component was elicited by standard pseudowords in both groups, the response amplitude not differing between groups. Early negative MMRs were absent in the at-risk group, and MMRs to duration changes diminished compared to controls. MMRs to vowel changes had significant laterality x group interactions resulting from right-lateralized MMRs in controls. Conclusions: The MMRs of high-risk infants were absent or diminished, and morphologically atypical, suggesting atypical neural speech-sound discrimination. Significance: This atypical neural basis for speech discrimination may contribute to impaired language development, potentially leading to future reading problems. (C) 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
  • Grimaldi, Mirko; Sisinni, Bianca; Fivela, Barbara Gili; Invitto, Sara; Resta, Donatella; Alku, Paava; Brattico, Elvira (2014)
  • Sarkamo, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M.; Laine, Matti; Hietanen, Marja; Pihko, Elina (2010)
    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.
  • Bonetti, L.; Haumann, N. T.; Brattico, E.; Kliuchko, M.; Vuust, P.; Särkämö, T.; Näätänen, R. (2018)
    Objective: Memory is the faculty responsible for encoding, storing and retrieving information, comprising several sub-systems such as sensory memory (SM) and working memory (WM). Some previous studies exclusively using clinical population revealed associations between these two memory systems. Here we aimed at investigating the relation between modality-general WM performance and auditory SM formation indexed by magnetic mismatch negativity (MMN) responses in a healthy population of young adults. Methods: Using magnetoencephalography (MEG), we recorded MMN amplitudes to changes related to six acoustic features (pitch, timbre, location, intensity, slide, and rhythm) inserted in a 4-tone sequence in 86 adult participants who were watching a silent movie. After the MEG recordings, participants were administered the WM primary subtests (Spatial Span and Letter Number Sequencing) of Wechsler Memory Scale (WMS). Results: We found significant correlations between frontal MMN amplitudes to intensity and slide deviants and WM performance. In case of intensity, the relation was revealed in all participants, while for slide only in individuals with a musical background. Conclusions: Automatic neural responses to auditory feature changes are increased in individuals with higher visual WM performance. Significance: Conscious WM abilities might be linked to pre-attentive sensory-specific neural skills of prediction and short-term storage of environmental regularities. (C) 2018 Elsevier B.V. All rights reserved.
  • Ylinen, Sari; Junttila, Katja; Laasonen, Marja; Iverson, Paul; Ahonen, Lauri; Kujala, Teija (2019)
    Dyslexia is characterized by poor reading skills, yet often also difficulties in second-language learning. The differences between native- and second-language speech processing and the establishment of new brain representations for spoken second language in dyslexia are not, however, well understood. We used recordings of the mismatch negativity component of event-related potential to determine possible differences between the activation of long-term memory representations for spoken native- and second-language word forms in Finnish-speaking 9-11-year-old children with or without dyslexia, studying English as their second language in school. In addition, we sought to investigate whether the bottleneck of dyslexic readers' second-language learning lies at the level of word representations or smaller units and whether the amplitude of mismatch negativity is correlated with native-language literacy and related skills. We found that the activation of brain representations for familiar second-language words, but not for second-language speech sounds or native-language words, was weaker in children with dyslexia than in typical readers. Source localization revealed that dyslexia was associated with weak activation of the right temporal cortex, which has been previously linked with word-form learning. Importantly, the amplitude of the mismatch negativity for familiar second-language words correlated with native-language literacy and rapid naming scores, suggesting a close link between second-language processing and these skills.
  • Virtala, Paula; Huotilainen, Minna; Lilja, Esa; Ojala, Juha; Tervaniemi, Mari (2018)
    GUITAR DISTORTION USED IN ROCK MUSIC MODIFIES a chord so that new frequencies appear in its harmonic structure. A distorted dyad (power chord) has a special role in heavy metal music due to its harmonics that create a major third interval, making it similar to amajor chord. We investigated how distortion affects cortical auditory processing of chords in musicians and nonmusicians. Electric guitar chords with or without distortion and with or without the interval of the major third (i.e., triads or dyads) were presented in an oddball design where one of them served as a repeating standard stimulus and others served as occasional deviants. This enabled the recording of event-related potentials (ERPs) of the electroencephalogram (EEG) related to deviance processing (the mismatch negativity MMN and the attention-related P3a component) in an ignore condition. MMN and P3a responses were elicited in most paradigms. Distorted chords in a non-distorted context only elicited early P3a responses. However, the power chord did not demonstrate a special role in the level of the ERPs. Earlier and larger MMN and P3a responses were elicited when distortion was modified compared to when only harmony (triad vs. dyad) was modified between standards and deviants. The MMN responses were largest when distortion and harmony deviated simultaneously. Musicians demonstrated larger P3a responses than nonmusicians. The results suggest mostly independent cortical auditory processing of distortion and harmony in Western individuals, and facilitated chord change processing in musicians compared to nonmusicians. While distortion has been used in heavy rock music for decades, this study is among the first ones to shed light on its cortical basis.
  • Nowak, Kamila; Oron, Anna; Szymaszek, Aneta; Leminen, Miika; Naatanen, Risto; Szelag, Elzbieta (2016)
    The present study investigates age-related changes in duration discrimination in millisecond time domain. We tested young (N = 20, mean age = 24.5, SD = 2.97) and elderly (N = 20, mean age = 65.2, SD = 2.94) subjects using the mismatch negativity (MMN) paradigm. White-noise bursts of two different durations (50 and 10 ms) were presented in two oddball blocks. In one block (Increment Condition), the repetitive sequence of 10 ms standards was interspersed by occasional 50 ms deviants. In the Decrement Condition, the roles of the two stimuli were reversed. We analyzed the P1-N1 complex, MMN and P3a and found the effect of age for all these components. Moreover, the impact of stimulus presentation condition (increment/decrement) was observed for MMN and P3a. Our results confirmed the previous evidence for deteriorated duration discrimination in elderly people. Additionally, we found that this effect may be influenced by procedural factors.
  • Tarkka, Ina M.; Savic, Andrej; Pekkola, Elina; Rottensteiner, Mirva; Leskinen, Tuija; Kaprio, Jaakko; Kujala, Urho M. (2016)
    Leisure-time physical activity is a key contributor to physical and mental health. Yet the role of physical activity in modulating cortical function is poorly known. We investigated whether precognitive sensory brain functions are associated with the level of physical activity. Physical activity history (3-yr-LTMET), physiological measures and somatosensory mismatch response (sMMR) in EEG were recorded in 32 young healthy twins. In all participants, 3-yr-LTMET correlated negatively with body fat%, r=0.77 and positively with VO2max, r=0.82. The fat% and VO2max differed between 15 physically active and 17 inactive participants. Trend toward larger sMMR was seen in inactive compared to active participants. This finding was significant in a pairwise comparison of 9 monozygotic twin pairs discordant for physical activity. Larger sMMR reflecting stronger synchronous neural activity may reveal diminished gating of precognitive somatosensory information in physically inactive healthy young men compared to the active ones possibly rendering them more vulnerable to somatosensory distractions from their surroundings. (C) 2016 Elsevier B.V. All rights reserved.
  • Linnavalli, Tanja; Putkinen, Vesa; Huotilainen, Minna; Tervaniemi, Mari (2018)
    The maturation of 5-6-year-old children's auditory discrimination - indicated by the development of the auditory event-related-potentials (ERPs) - has not been previously studied in longitudinal settings. For the first time, we present here the results based on extensive dataset collected from 75 children. We followed the 5- to 6-year-olds for 20 months and measured their ERPs four times with the same multifeature paradigm with phonemic stimuli. The amplitude of the mismatch negativity (MMN) response increased during this time for vowel, vowel duration and frequency changes. Furthermore, the P3a component started to mature toward adult-like positivity for the vowel, intensity and frequency deviants and the late discriminative negativity (LDN) component decreased with age for vowel and intensity deviants. All the changes in the components seemed to happen during the second follow-up year, when Finnish children are taught letter symbols and other preliminary academic skills before going to school at the age of seven. Therefore, further studies are needed to clarify if these changes in the auditory discrimination are purely age-related or due to increasing linguistic knowledge of the children.
  • Linnavalli, Tanja; Ojala, Juha; Haveri, Laura; Putkinen, Vesa; Kostilainen, Kaisamari; Seppänen, Sirke; Tervaniemi, Mari (2020)
    CONSONANCE AND DISSONANCE ARE BASIC phenomena in the perception of chords that can be discriminated very early in sensory processing. Musical expertise has been shown to facilitate neural processing of various musical stimuli, but it is unclear whether this applies to detecting consonance and dissonance. Our study aimed to determine if sensitivity to increasing levels of dissonance differs between musicians and nonmusicians, using a combination of neural (electroencephalographic mismatch negativity, MMN) and behavioral measurements (conscious discrimination). Furthermore, we wanted to see if focusing attention to the sounds modulated the neural processing. We used chords comprised of either highly consonant or highly dissonant intervals and further manipulated the degree of dissonance to create two levels of dissonant chords. Both groups discriminated dissonant chords from consonant ones neurally and behaviorally. The magnitude of the MMN differed only marginally between the more dissonant and the less dissonant chords. The musicians outperformed the nonmusicians in the behavioral task. As the dissonant chords elicited MMN responses for both groups, sensory dissonance seems to be discriminated in an early sensory level, irrespective of musical expertise, and the facilitating effects of musicianship for this discrimination may arise in later stages of auditory processing, appearing only in the behavioral auditory task.
  • Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna (2019)
    The influence of musical experience on brain development has been mostly studied in school-aged children with formal musical training while little is known about the possible effects of less formal musical activities typical for preschool-aged children (e.g., before the age of seven). In the current study, we investigated whether the amount of musical group activities is reflected in the maturation of neural sound discrimination from toddler to preschool-age. Specifically, we recorded event-related potentials longitudinally (84 recordings from 33 children) in a mismatch negativity (MMN) paradigm to different musically relevant sound changes at ages 2-3, 4-5 and 6-7 years from children who attended a musical playschool throughout the follow-up period and children with shorter attendance to the same playschool. In the first group, we found a gradual positive to negative shift in the polarities of the mismatch responses while the latter group showed little evidence of age-related changes in neural sound discrimination. The current study indicates that the maturation of sound encoding indexed by the MMN may be more protracted than once thought and provides first longitudinal evidence that even quite informal musical group activities facilitate the development of neural sound discrimination during early childhood.
  • Kostilainen, Kaisamari; Partanen, Eino; Mikkola, Kaija; Wikström, Valtteri; Pakarinen, Satu; Fellman, Vineta; Huotilainen, Minna (2020)
    Objective: Auditory change-detection responses provide information on sound discrimination and memory skills in infants. We examined both the automatic change-detection process and the processing of emotional information content in speech in preterm infants in comparison to full-term infants at term age. Methods: Preterm (n = 21) and full-term infants' (n = 20) event-related potentials (ERP) were recorded at term age. A challenging multi-feature mismatch negativity (MMN) paradigm with phonetic deviants and rare emotional speech sounds (happy, sad, angry), and a simple one-deviant oddball paradigm with pure tones were used. Results: Positive mismatch responses (MMR) were found to the emotional sounds and some of the phonetic deviants in preterm and full-term infants in the multi-feature MMN paradigm. Additionally, late positive MMRs to the phonetic deviants were elicited in the preterm group. However, no group differences to speech-sound changes were discovered. In the oddball paradigm, preterm infants had positive MMRs to the deviant change in all latency windows. Responses to non-speech sounds were larger in preterm infants in the second latency window, as well as in the first latency window at the left hemisphere electrodes (F3, C3). Conclusions: No significant group-level differences were discovered in the neural processing of speech sounds between preterm and full-term infants at term age. Change-detection of non-speech sounds, however, may be enhanced in preterm infants at term age. Significance: Auditory processing of speech sounds in healthy preterm infants showed similarities to full-term infants at term age. Large individual variations within the groups may reflect some underlying differences that call for further studies.
  • Heikkila, Jenni; Tiippana, Kaisa; Loberg, Otto; Leppänen, Paavo H. T. (2018)
    Seeing articulatory gestures enhances speech perception. Perception of auditory speech can even be changed by incongruent visual gestures, which is known as the McGurk effect (e.g., dubbing a voice saying /mi/ onto a face articulating /ni/, observers often hear /ni/). In children, the McGurk effect is weaker than in adults, but no previous knowledge exists about the neural-level correlates of the McGurk effect in school-age children. Using brain event-related potentials, we investigated change detection responses to congruent and incongruent audiovisual speech in school-age children and adults. We used an oddball paradigm with a congruent audiovisual /mi/ as the standard stimulus and a congruent audiovisual /ni/ or McGurk A/mi/V/ni/ as the deviant stimulus. In adults, a similar change detection response was elicited by both deviant stimuli. In children, change detection responses differed between the congruent and the McGurk stimulus. This reflects a maturational difference in the influence of visual stimuli on auditory processing.
  • Thiede, A.; Parkkonen, L.; Virtala, P.; Laasonen, M.; Makela, J. P.; Kujala, T. (2020)
    Poor neural speech discrimination has been connected to dyslexia, and may represent phonological processing deficits that are hypothesized to be the main cause for reading impairments. Thus far, neural speech discrimination impairments have rarely been investigated in adult dyslexics, and even less by examining sources of neuromagnetic responses. We compared neuromagnetic speech discrimination in dyslexic and typical readers with mismatch fields (MMF) and determined the associations between MMFs and reading-related skills. We expected weak and atypically lateralized MMFs in dyslexic readers, and positive associations between readingrelated skills and MMF strength. MMFs were recorded to a repeating pseudoword /ta-ta/ with occasional changes in vowel identity, duration, or syllable frequency from 43 adults, 21 with confirmed dyslexia. Phonetic (vowel and duration) changes elicited left-lateralized MMFs in the auditory cortices. Contrary to our hypothesis, MMF source strengths or lateralization did not differ between groups. However, better verbal working memory was associated with stronger left-hemispheric MMFs to duration changes across groups, and better reading was associated with stronger right-hemispheric late MMFs across speech-sound changes in dyslexic readers. This suggests a link between neural speech processing and reading-related skills, in line with previous work. Furthermore, our findings suggest a right-hemispheric compensatory mechanism for language processing in dyslexia. The results obtained promote the use of MMFs in investigating reading-related brain processes.
  • Kurkela, Jari L. O.; Lipponen, Arto; Hämäläinen, Jarmo A.; Näätänen, Risto; Astikainen, Piia (2016)
    Experience-induced changes in the functioning of the auditory cortex are prominent in early life, especially during a critical period. Although auditory perceptual learning takes place automatically during this critical period, it is thought to require active training in later life. Previous studies demonstrated rapid changes in single-cell responses of anesthetized adult animals while exposed to sounds presented in a statistical learning paradigm. However, whether passive exposure to sounds can form long-term memory representations remains to be demonstrated. To investigate this issue, we first exposed adult rats to human speech sounds for 3 consecutive days, 12 h/d. Two groups of rats exposed to either spectrotemporal or tonal changes in speech sounds served as controls for each other. Then, electrophysiological brain responses from the auditory cortex were recorded to the same stimuli. In both the exposure and test phase statistical learning paradigm, was applied. The exposure effect was found for the spectrotemporal sounds, but not for the tonal sounds. Only the animals exposed to spectrotemporal sounds differentiated subtle changes in these stimuli as indexed by the mismatch negativity response. The results point to the occurrence of long-term memory traces for the speech sounds due to passive exposure in adult animals.
  • Zora, Hatice; Riad, Tomas; Ylinen, Sari; Csepe, Valeria (2021)
    Dealing with phonological variations is important for speech processing. This article addresses whether phonological variations introduced by assimilatory processes are compensated for at the pre-lexical or lexical level, and whether the nature of variation and the phonological context influence this process. To this end, Swedish nasal regressive place assimilation was investigated using the mismatch negativity (MMN) component. In nasal regressive assimilation, the coronal nasal assimilates to the place of articulation of a following segment, most clearly with a velar or labial place of articulation, as in utan mej "without me" > [MODIFIER LETTER TRIANGULAR COLONtam mejMODIFIER LETTER TRIANGULAR COLON]. In a passive auditory oddball paradigm, 15 Swedish speakers were presented with Swedish phrases with attested and unattested phonological variations and contexts for nasal assimilation. Attested variations - a coronal-to-labial change as in utan "without" > [MODIFIER LETTER TRIANGULAR COLONtam] - were contrasted with unattested variations - a labial-to-coronal change as in utom "except" > *[MODIFIER LETTER TRIANGULAR COLONtLATIN SMALL LETTER OPEN On] - in appropriate and inappropriate contexts created by mej "me" [mejMODIFIER LETTER TRIANGULAR COLON] and dej "you" [dejMODIFIER LETTER TRIANGULAR COLON]. Given that the MMN amplitude depends on the degree of variation between two stimuli, the MMN responses were expected to indicate to what extent the distance between variants was tolerated by the perceptual system. Since the MMN response reflects not only low-level acoustic processing but also higher-level linguistic processes, the results were predicted to indicate whether listeners process assimilation at the pre-lexical and lexical levels. The results indicated no significant interactions across variations, suggesting that variations in phonological forms do not incur any cost in lexical retrieval; hence such variation is compensated for at the lexical level. However, since the MMN response reached significance only for a labial-to-coronal change in a labial context and for a coronal-to-labial change in a coronal context, the compensation might have been influenced by the nature of variation and the phonological context. It is therefore concluded that while assimilation is compensated for at the lexical level, there is also some influence from pre-lexical processing. The present results reveal not only signal-based perception of phonological units, but also higher-level lexical processing, and are thus able to reconcile the bottom-up and top-down models of speech processing.
  • Videman, Mari; Stjerna, Susanna; Wikstrom, Valtteri; Nybo, Taina; Roivainen, Reina; Vanhatalo, Sampsa; Huotilainen, Minna; Gaily, Eija (2019)
    Introduction: Prenatal exposure to antiepileptic drugs (AEDs) is associated with developmental compromises in verbal intelligence and social skills in childhood. Our aim was to evaluate whether a multifeature Mismatch Negativity (MMN) paradigm assessing semantic and emotional components of linguistic and emotional processing would be useful to detect possible alterations in early auditory processing of newborns with prenatal AED exposure. Material and methods: Data on AED exposure. pregnancy outcome, neuropsychological evaluation of the mothers, information on maternal epilepsy type, and a structured neurological examination of the newborn were collected prospectively. Blinded to AED exposure, we compared a cohort of 36 AED-exposed with 46 control newborns at the age of two weeks by measuring MMN with a multifeature paradigm with six linguistically relevant deviant sounds and three emotionally uttered sounds. Results: Frontal responses for the emotionally uttered stimulus Happy differed significantly in the exposed newborns compared with the control newborns. In addition, responses to sounds with or without emotional component differed in newborns exposed to multiple AEDs compared with control newborns or to newborns exposed to only one AED. Conclusions: These preliminary findings suggest that prenatal AED exposure may alter early processing of emotionally and linguistically relevant sound information. (C) 2019 Elsevier Inc. All rights reserved.
  • Timm, Lydia; Vuust, Peter; Brattico, Elvira; Agrawal, Deepashri; Debener, Stefan; Buechner, Andreas; Dengler, Reinhard; Wittforth, Matthias (2014)
  • Hautasaari, Pekka; Savic, Andrej M.; Loberg, Otto; Niskanen, Eini; Kaprio, Jaakko; Kujala, Urho M.; Tarkka, Ina M. (2017)
    Associations between long-term physical activity and cortical function and brain structure are poorly known. Our aim was to assess whether brain functional and/or structural modulation associated with long-term physical activity is detectable using a discordant monozygotic male twin pair design. Nine monozygotic male twin pairs were carefully selected for an intrapair difference in their leisure-time physical activity of at least three years duration (mean age 34 +/- 1 years). We registered somatosensory mismatch response (SMMR) in EEG to electrical stimulation of fingers and whole brain MR images. We obtained exercise history and measured physical fitness and body composition. Equivalent electrical dipole sources of SMMR as well as gray matter (GM) voxel counts in regions of interest indicated by source analysis were evaluated. SMMR dipolar source strengths differed between active and inactive twins within twin pairs in postcentral gyrus, medial frontal gyrus and superior temporal gyrus and in anterior cingulate (AC) GM voxel counts differed similarly. Compared to active twins, their inactive twin brothers showed greater dipole strengths in short periods of the deviant-elicited SMMR and larger AC GM voxel counts. Stronger activation in early unattended cortical processing of the deviant sensory signals in inactive co-twins may imply less effective gating of somatosensory information in inactive twins compared to their active brothers. Present findings indicate that already in 30's long-term physical activity pattern is linked with specific brain indices, both in functional and structural domains.
  • Näätänen, Risto; Petersen, Bjorn; Torppa, Ritva; Lonka, Eila; Vuust, Peter (2017)
    In the present article, we review the studies on the use of the mismatch negativity (MMN) as a tool for an objective assessment of cochlear-implant (CI) functioning after its implantation and as a function of time of CI use. The MMN indexes discrimination of different sound stimuli with a precision matching with that of behavioral discrimination and can therefore be used as its objective index. Importantly, these measurements can be reliably carried out even in the absence of attention and behavioral responses and therefore they can be extended to populations that are not capable of behaviorally reporting their perception such as infants and different clinical patient groups. In infants and small children with CI, the MMN provides the only means for assessing the adequacy of the CI functioning, its improvement as a function of time of CI use, and the efficiency of different rehabilitation procedures. Therefore, the MMN can also be used as a tool in developing and testing different novel rehabilitation procedures. Importantly, the recently developed multi-feature MMN paradigms permit the objective assessment of discrimination accuracy for all the different auditory dimensions (such as frequency, intensity, and duration) in a short recording time of about 30 min. Most recently, such stimulus paradigms have been successfully developed for an objective assessment of music perception, too. (C) 2017 Elsevier B.V. All rights reserved.