Browsing by Subject "MISMATCH NEGATIVITY"

Sort by: Order: Results:

Now showing items 1-20 of 25
  • Kimppa, Lilli; Shtyrov, Yury; Hut, Suzanne C. A.; Hedlund, Laura; Leminen, Miika; Leminen, Alina (2019)
    Learning a new language requires the acquisition of morphological units that enable the fluent use of words in different grammatical contexts. While accumulating research has elucidated the neural processing of native morphology, much less is known about how second-language (L2) learners acquire and process morphology in their L2. To address this question, we presented native speakers as well as beginning and advanced learners of Finnish with spoken (1) derived words, (2) inflected words, (3) novel derivations (novel combinations of existing stem + suffix), and (4) pseudo-suffixed words (existing stem + pseudo-suffix) in a passive listening EEG experiment. An early (60 msec after suffix deviation point) positive ERP response showed no difference between inflections and derivations, suggesting similar early parsing of these complex words. At 130 msec, derivations elicited a lexical ERP pattern of full-form memory-trace activation, present in the L2 beginners and advanced speakers to different degrees, implying a shift from lexical processing to more dual parsing and lexical activation of the complex forms with increasing proficiency. Pseudo-suffixed words produced a syntactic pattern in a later, 170 240 msec time-window, exhibiting enhanced ERPs compared to well-formed inflections, indicating second-pass syntactic parsing. Overall, the L2 learners demonstrated a gradual effect of proficiency towards L1-like responses. Advanced L2 learners seem to have developed memory traces for derivations and their neurolinguistic system is capable of early automatic parsing. This suggests that advanced learners have already developed sensitivity to morphological information, while such knowledge is weak in beginners. Discrepancies in ERP dynamics and topographies indicate partially differing recruitment of the language network in L1 and L2. In beginners, response differences between existing and novel morphology were scarce, implying that representations for complex forms are not yet well-established. The results suggest successful development of brain mechanisms for automatic processing of L2 morphology, capable of gradually attaining L1-like functionality with increasing proficiency. (C) 2019 The Authors. Published by Elsevier Ltd.
  • Tamminen, Henna; Kujala, Teija; Näätänen, Risto; Peltola, Maija S. (2021)
    Cognitive decline is evident in the elderly and it affects speech perception and foreign language learning. A listen-and-repeat training with a challenging speech sound contrast was earlier found to be effective in young monolingual adults and even in advanced L2 university students at the attentive and pre-attentive levels. This study investigates foreign language speech perception in the elderly with the same protocol used with the young adults. Training effects were measured with attentive behavioural measures (N = 9) and with electroencephalography measuring the pre-attentive mismatch negativity (MMN) response (N = 10). Training was effective in identification, but not in discrimination and there were no changes in the MMN. The most attention demanding perceptual functions which benefit from experience-based linguistic knowledge were facilitated through training, whereas pre-attentive processing was unaffected. The elderly would probably benefit from different training types compared to younger adults.
  • Trusbak Haumann, Niels; Hansen, Brian; Huotilainen, Minna; Vuust, Peter; Brattico, Elvira (2020)
    Background The accuracy of electroencephalography (EEG) and magnetoencephalography (MEG) in measuring neural evoked responses (ERs) is challenged by overlapping neural sources. This lack of accuracy is a severe limitation to the application of ERs to clinical diagnostics. New method We here introduce a theory of stochastic neuronal spike timing probability densities for describing the large-scale spiking activity in neural assemblies, and a spike density component analysis (SCA) method for isolating specific neural sources. The method is tested in three empirical studies with 564 cases of ERs to auditory stimuli from 94 humans, each measured with 60 EEG electrodes and 306 MEG sensors, and a simulation study with 12,300 ERs. Results The first study showed that neural sources (but not non-encephalic artifacts) in individual averaged MEG/EEG waveforms are modelled accurately with temporal Gaussian probability density functions (median 99.7 %–99.9 % variance explained). The following studies confirmed that SCA can isolate an ER, namely the mismatch negativity (MMN), and that SCA reveals inter-individual variation in MMN amplitude. Finally, SCA reduced errors by suppressing interfering sources in simulated cases. Comparison with existing methods We found that gamma and sine functions fail to adequately describe individual MEG/EEG waveforms. Also, we observed that principal component analysis (PCA) and independent component analysis (ICA) does not consistently suppress interference from overlapping brain activity in neither empirical nor simulated cases. Conclusions These findings suggest that the overlapping neural sources in single-subject or patient data can be more accurately separated by applying SCA in comparison to PCA and ICA.
  • Lindstrom, R.; Lepistö-Paisley, T.; Makkonen, T.; Reinvall, O.; Nieminen-von Wendt, T.; Alen, R.; Kujala, T. (2018)
    Objective: The present study explored the processing of emotional speech prosody in school-aged children with autism spectrum disorders (ASD) but without marked language impairments (children with ASD [no LI]). Methods: The mismatch negativity (MMN)/the late discriminative negativity (LDN), reflecting pre-attentive auditory discrimination processes, and the P3a, indexing involuntary orienting to attention-catching changes, were recorded to natural word stimuli uttered with different emotional connotations (neutral, sad, scornful and commanding). Perceptual prosody discrimination was addressed with a behavioral sound-discrimination test. Results: Overall, children with ASD (no LI) were slower in behaviorally discriminating prosodic features of speech stimuli than typically developed control children. Further, smaller standard-stimulus event related potentials (ERPs) and MMN/LDNs were found in children with ASD (no LI) than in controls. In addition, the amplitude of the P3a was diminished and differentially distributed on the scalp in children with ASD (no LI) than in control children. Conclusions: Processing of words and changes in emotional speech prosody is impaired at various levels of information processing in school-aged children with ASD (no LI). Significance: The results suggest that low-level speech sound discrimination and orienting deficits might contribute to emotional speech prosody processing impairments observed in ASD. (C) 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
  • Haumann, Niels Trusbak; Parkkonen, Lauri; Kliuchko, Marina; Vuust, Peter; Brattico, Elvira (2016)
    We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG) and electroencephalography (EEG) recordings of the auditory evoked Mismatch Negativity (MMN) responses in healthy adult subjects. We compared the Signal Space Separation (SSS) and temporal SSS (tSSS) methods for reducing noise from external and nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS is recommended over SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA) in comparison to Signal Space Projection (SSP). Although SSP reduces the baseline noise level more than ICA, SSP also significantly reduces the signal-slightly more than it reduces the artifacts interfering with the signal. However, ICA also adds noise, or correction errors, to the wave form when the signal-to-noise ratio (SNR) in the original data is relatively low-in particular to EEG and to MEG magnetometer data. In conclusion, ICA is recommended over SSP, but one should be careful when applying ICA to reduce artifacts on neurophysiological data with relatively low SNR.
  • Torppa, Ritva; Faulkner, Andrew; Kujala, Teija; Huotilainen, Minna; Lipsanen, Jari (2018)
    THE PERCEPTION OF SPEECH IN NOISE IS challenging for children with cochlear implants (CIs). Singing and musical instrument playing have been associated with improved auditory skills in normal-hearing (NH) children. Therefore, we assessed how children with CIs who sing informally develop in the perception of speech in noise compared to those who do not. We also sought evidence of links of speech perception in noise with MMN and P3a brain responses to musical sounds and studied effects of age and changes over a 14-17 month time period in the speech-in-noise performance of children with CIs. Compared to the NH group, the entire CI group was less tolerant of noise in speech perception, but both groups improved similarly. The CI singing group showed better speech-in-noise perception than the CI non-singing group. The perception of speech in noise in children with CIs was associated with the amplitude of MMN to a change of sound from piano to cymbal, and in the CI singing group only, with earlier P3a for changes in timbre. While our results cannot address causality, they suggest that singing and musical instrument playing may have a potential to enhance the perception of speech in noise in children with CIs.
  • Poikonen, Hanna Liisa; Toiviainen, Petri; Tervaniemi, Mari Anni Irmeli (2016)
    The neural responses to simple tones and short sound sequences have been studied extensively. However, in reality the sounds surrounding us are spectrally and temporally complex, dynamic and overlapping. Thus, research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation which, in addition to sensory responses, elicits vast cognitive and emotional processes in the brain. Here we show that the preattentive P50 response evoked by rapid increases in timbral brightness during continuous music is enhanced in dancers when compared to musicians and laymen. In dance, fast changes in brightness are often emphasized with a significant change in movement. In addition, the auditory N100 and P200 responses are suppressed and sped up in dancers, musicians and laymen when music is accompanied with a dance choreography. These results were obtained with a novel event-related potential (ERP) method for natural music. They suggest that we can begin studying the brain with long pieces of natural music using the ERP method of electroencephalography (EEG) as has already been done with functional magnetic resonance (fMRI), these two brain imaging methods complementing each other.
  • Alsius, Agnes; Möttönen, Riikka; Sams, Mikko E.; Soto-Faraco, Salvador; Tiippana, Kaisa (2014)
  • Rämä, Pia; Leminen, Alina; Koskenoja-Vainikka, Satu; Leminen, Miika; Alho, Kimmo; Kujala, Teija (2018)
    Dual language experience has typically been shown to improve various executive control functions. We investigated with event-related brain potentials (ERPs) recorded from early (natively) bilingual speakers and control participants whether it also affects auditory selective attention. We delivered to our participants two tone streams, one to the left and one to the right ear. Both streams consisted of standard tones and two types of infrequent deviant tones which had either an enhanced duration or intensity. The participants were instructed to attend either to the right or left stream and to detect longer-duration deviants in the attended stream. The results showed that the early bilinguals did not outperform the controls in target detection accuracy or speed. However, the late portion of the attention-related ERP modulation (the negative difference, Nd) was larger over the left hemisphere in the early bilinguals than in the controls, suggesting that the maintenance of selective attention or further processing of selectively attended sounds is enhanced in the bilinguals. Moreover, the late reorienting negativity (RON) in response to intensity-deviant tones was larger in the bilinguals, suggesting more efficient disengagement of attention from distracting auditory events. Hence, our results demonstrate that brain responses associated with certain aspects of auditory attention are enhanced in the bilingual adults, indicating that early dual language exposure modulates the neuronal responsiveness of auditory modality.
  • Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu (2015)
    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz) alpha (8-14 Hz), beta- (14-30 Hz) and gamma- (30-80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma- band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.
  • Putkinen, Vesa; Saarikivi, Katri; Chan, Tsz Man Vanessa; Tervaniemi, Mari (2021)
    Previous work suggests that musical training in childhood is associated with enhanced executive functions. However, it is unknown whether this advantage extends to selective attention-another central aspect of executive control. We recorded a well-established event-related potential (ERP) marker of distraction, the P3a, during an audio-visual task to investigate the maturation of selective attention in musically trained children and adolescents aged 10-17 years and a control group of untrained peers. The task required categorization of visual stimuli, while a sequence of standard sounds and distracting novel sounds were presented in the background. The music group outperformed the control group in the categorization task and the younger children in the music group showed a smaller P3a to the distracting novel sounds than their peers in the control group. Also, a negative response elicited by the novel sounds in the N1/MMN time range (similar to 150-200 ms) was smaller in the music group. These results indicate that the music group was less easily distracted by the task-irrelevant sound stimulation and gated the neural processing of the novel sounds more efficiently than the control group. Furthermore, we replicated our previous finding that, relative to the control group, the musically trained children and adolescents performed faster in standardized tests for inhibition and set shifting. These results provide novel converging behavioral and electrophysiological evidence from a cross-modal paradigm for accelerated maturation of selective attention in musically trained children and adolescents and corroborate the association between musical training and enhanced inhibition and set shifting.
  • Sysoeva, Olga V.; Lange, Elke B.; Sorokin, Alexander B.; Campbell, Tom (2015)
    Visual search and oddball paradigms were combined to investigate memory for to-be-ignored color changes in a group of 12 healthy participants. The onset of unexpected color change of an irrelevant stimulus evoked two reliable ERP effects: a component of the event-related potential (ERP), similar to the visual mismatch negativity response (vMMN), with a latency of 120-160 ms and a posterior distribution over the left hemisphere and Late Fronto-Central Negativity (LFCN) with a latency of 320-400 ms, apparent at fronto-central electrodes and some posterior sites. Color change of that irrelevant stimulus also slowed identification of a visual target, indicating distraction. The amplitude of this color-change vMMN, but not LFCN, indexed this distraction effect. That is, electrophysiological and behavioral measures were correlated. The interval between visual scenes approximated 1 s (611-1629 ms), indicating that the brain's sensory memory for the color of the preceding visual scenes must persist for at least 600 ms. Therefore, in the case of the neural code for color, durable memory representations are formed in an obligatory manner. (C) 2014 Elsevier B.V. All rights reserved.
  • Bosseler, Alexis N.; Teinonen, Tuomas; Tervaniemi, Mari; Huotilainen, Minna (2016)
    Statistical learning and the social contexts of language addressed to infants are hypothesized to play important roles in early language development. Previous behavioral work has found that the exaggerated prosodic contours of infant-directed speech (IDS) facilitate statistical learning in 8-month-old infants. Here we examined the neural processes involved in on-line statistical learning and investigated whether the use of IDS facilitates statistical learning in sleeping newborns. Event-related potentials (ERPs) were recorded while newborns were exposed to 12 pseudo-words, six spoken with exaggerated pitch contours of IDS and six spoken without exaggerated pitch contours (ADS) in ten alternating blocks. We examined whether ERP amplitudes for syllable position within a pseudo-word (word-initial vs. word-medial vs. word-final, indicating statistical word learning) and speech register (ADS vs. IDS) would interact. The ADS and IDS registers elicited similar ERP patterns for syllable position in an early 0-100 ms component but elicited different ERP effects in both the polarity and topographical distribution at 200-400 ms and 450-650 ms. These results provide the first evidence that the exaggerated pitch contours of IDS result in differences in brain activity linked to on-line statistical learning in sleeping newborns.
  • Kailaheimo-Lönnqvist, Linda; Virtala, Paula; Fandakova, Yana; Partanen, Eino; Leppänen, Paavo H. T.; Thiede, Anja; Kujala, Teija (2020)
    Neural auditory processing and prelinguistic communication build the foundation for later language development, but how these two are associated is not well known. The current study investigated how neural speech processing is associated with the level and development of prelinguistic skills in 102 infants. We recorded event-related potentials (ERPs) in 6-months-olds to assess the neural detection of a pseudoword (obligatory responses), as well as the neural discrimination of changes in the pseudoword (mismatch responses, MMRs). Prelinguistic skills were assessed at 6 and 12 months of age with a parental questionnaire (Infant-Toddler Checklist). The association between the ERPs and prelinguistic skills was examined using latent change score models, a method specifically constructed for longitudinal analyses and explicitly modeling intra-individual change. The results show that a large obligatory P1 at 6 months of age predicted strong improvement in prelinguistic skills between 6 and 12 months of age. The MMR to a frequency change was associated with the concurrent level of prelinguistic skills, but not with the improvement of the skills. Overall, our results highlight the strong association between ERPs and prelinguistic skills, possibly offering opportunities for early detection of atypical linguistic and communicative development.
  • Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna (2013)
  • Haapala, Sini; Niemitalo-Haapola, Elina; Raappana, Antti; Kujala, Tiia; Suominen, Kalervo; Jansson-Verkasalo, Eira; Kujala, Teija (2016)
    Background: A large group of young children are exposed to repetitive middle ear infections but the effects of the fluctuating hearing sensations on immature central auditory system are not fully understood. The present study investigated the consequences of early childhood recurrent acute otitis media (RAOM) on involuntary auditory attention switching. Methods: By utilizing auditory event-related potentials, neural mechanisms of involuntary attention were studied in 22-26 month-old children (N = 18) who had had an early childhood RAOM and healthy controls (N = 19). The earlier and later phase of the P3a (eP3a and lP3a) and the late negativity (LN) were measured for embedded novel sounds in the passive multi-feature paradigm with repeating standard and deviant syllable stimuli. The children with RAOM had tympanostomy tubes inserted and all the children in both study groups had to have clinically healthy ears at the time of the measurement assessed by an otolaryngologist. Results: The results showed that lP3a amplitude diminished less from frontal to central and parietal areas in the children with RAOM than the controls. This might reflect an immature control of involuntary attention switch. Furthermore, the LN latency was longer in children with RAOM than in the controls, which suggests delayed reorientation of attention in RAOM. Conclusions: The lP3a and LN responses are affected in toddlers who have had a RAOM even when their ears are healthy. This suggests detrimental long-term effects of RAOM on the neural mechanisms of involuntary attention.
  • Virtala, P.; Huotilainen, M.; Partanen, E.; Tervaniemi, Mari (2014)
  • Putkinen, Vesa; Huotilainen, Minna; Tervaniemi, Mari (2019)
    Musical training in childhood has been linked to enhanced sound encoding at different stages of the auditory processing. In the current study, we used auditory event-related potentials to investigate cortical sound processing in 9- to 15-year-old children (N = 88) with and without musical training. Specifically, we recorded the mismatch negativity (MMN) and P3a responses in an oddball paradigm consisting of standard tone pairs with ascending pitch and deviant tone pairs with descending pitch. A subsample of the children (N = 44) also completed a standardized test of reading ability. The musically trained children showed a larger P3a response to the deviant sound pairs. Furthermore, the amplitude of the P3a correlated with a pseudo-word reading test score. These results corroborate previous findings on enhanced sound encoding in musically trained children and are in line with studies suggesting that neural discrimination of spectrotemporal sound patterns is predictive of reading ability.
  • Virtala, Paula; Tervaniemi, Mari (2017)
  • Virtala, P.; Talola, S.; Partanen, E.; Kujala, T. (2020)
    Whereas natural acoustic variation in speech does not compromise phoneme discrimination in healthy adults, it was hypothesized to be a challenge for developmental dyslexics. We investigated dyslexics’ neural and perceptual discrimination of native language phonemes during acoustic variation. Dyslexics and non-dyslexics heard /æ/ and /i/ phonemes in a context with fo variation and then in a context without it. Mismatch negativity (MMN) and P3a responses to phoneme changes were recorded with electroencephalogram to compare groups during ignore and attentive listening. perceptual phoneme discrimination in the variable context was evaluated with hit-ratios and reaction times. MMN/N2bs were diminished in dyslexics in the variable context. Hit-ratios were smaller in dyslexics than controls. MMNs did not differ between groups in the context without variation. These results suggest that even distinctive vowels are challenging to discriminate for dyslexics when the context resembles natural variability of speech. This most likely reflects poor categorical perception of phonemes in dyslexics. Difficulties to detect linguistically relevant invariant information during acoustic variation in speech may contribute to dyslexics’ deficits in forming native language phoneme representations during infancy. Future studies should acknowledge that simple experimental paradigms with repetitive stimuli can be insensitive to dyslexics’ speech processing deficits.