Browsing by Subject "MITOCHONDRIAL"

Sort by: Order: Results:

Now showing items 1-20 of 23
  • Lutfullahoglu-Bal, Güleycan; Seferoglu, Ayse Bengisu; Keskin, Abdurrahman; Akdogan, Emel; Dunn, Cory D. (2018)
    Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
  • Saari, Sina; Garcia, Geovana S.; Bremer, Katharina; Chioda, Marina M.; Andjelković, Ana; Debes, Paul V.; Nikinmaa, Mikko; Szibor, Marten; Dufour, Eric; Rustin, Pierre; Oliveira, Marcos T.; Jacobs, Howard T. (2019)
    The alternative respiratory chain (aRC), comprising the alternative NADH dehydrogenases (NDX) and quinone oxidases (AOX), is found in microbes, fungi and plants, where it buffers stresses arising from restrictions on electron flow in the oxidative phosphorylation system. The aRC enzymes are also found in species belonging to most metazoan phyla, including some chordates and arthropods species, although not in vertebrates or in Drosophila. We postulated that the aRC enzymes might be deployed to alleviate pathological stresses arising from mitochondrial dysfunction in a wide variety of disease states. However, before such therapies can be contemplated, it is essential to understand the effects of aRC enzymes on cell metabolism and organismal physiology. Here we report and discuss new findings that shed light on the functions of the aRC enzymes in animals, and the unexpected benefits and detriments that they confer on model organisms. In Ciona intestinalis, the aRC is induced by hypoxia and by sulfide, but is unresponsive to other environmental stressors. When expressed in Drosophila, AOX results in impaired survival under restricted nutrition, in addition to the previously reported male reproductive anomalies. In contrast, it confers cold resistance to developing and adult flies, and counteracts cell signaling defects that underlie developmental dysmorphologies. The aRC enzymes may also influence lifespan and stress resistance more generally, by eliciting or interfering with hormetic mechanisms. In sum, their judicious use may lead to major benefits in medicine, but this will require a thorough characterization of their properties and physiological effects.
  • Laakkonen, Hanna; Hardman, Michael; Strelkov, Petr; Väinölä, Risto (2021)
    The amphi-boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans-Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter-oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans-Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter-oceanic affinities and dispersal histories. For a general view on the trans-Arctic dynamics and of the roles of potential dispersal-vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi-boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter-oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene-Pleistocene-Holocene time frame. Repeated inter-oceanic exchange was inferred for 23 taxa, and the latest connection was usually post-glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late- or post-glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter-oceanic vicariance scenario underlying amphi-boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region.
  • McCrory, Cathal; Fiorito, Giovanni; McLoughlin, Sinead; Polidoro, Silvia; Cheallaigh, Cliona Ni; Bourke, Nollaig; Karisola, Piia; Alenius, Harri; Vineis, Paolo; Layte, Richard; Kenny, Rose Anne (2020)
    Allostatic load (AL) and epigenetic clocks both attempt to characterize the accelerated aging of biological systems, but at present it is unclear whether these measures are complementary or distinct. This study examines the cross-sectional association of AL with epigenetic age acceleration (EAA) in a subsample of 490 community-dwelling older adults participating in The Irish Longitudinal study on Aging (TILDA). A battery of 14 biomarkers representing the activity of four different physiological systems: immunological, cardiovascular, metabolic, renal, was used to construct the AL score. DNA methylation age was computed according to the algorithms described by Horvath, Hannum, and Levine allowing for estimation of whether an individual is experiencing accelerated or decelerated aging. Horvath, Hannum, and Levine EAA correlated 0.05, 0.03, and 0.21 with AL, respectively. Disaggregation by sex revealed that AL was more strongly associated with EAA in men compared with women as assessed using Horvath's clock. Metabolic dysregulation was a strong driver of EAA in men as assessed using Horvath and Levine's clock, while metabolic and cardiovascular dysregulation were associated with EAA in women using Levine's clock. Results indicate that AL and the epigenetic clocks are measuring different age-related variance and implicate sex-specific drivers of biological aging.
  • Hakala, Sanja Maria; Seppä, Perttu; Heikkilä, Maria; Punttila, Pekka; Sorvari, Jouni; Helanterä, Heikki (2018)
    Coptoformica Muller, 1923 is a subgenus of Formica Linnaeus, 1758 that consists of c. a dozen species of ants that typically inhabit open grassy habitats and build small nest mounds. The most recent addition to the group is Formica fennica Seifert, 2000. The description was based on morphological characters, but the species status has not been confirmed by molecular methods. In this study, we use thirteen DNA microsatellite markers and a partial mitochondrial COI gene sequence to assess the species status of F. fennica, by comparing the genetic variation among samples identified as F. fennica and six other boreal Formica (Coptoformica) species. Most of the species studied form separate, discontinuous clusters in phylogenetic and spatial analyses with only little intraspecific genetic variation. However, both nuclear and mitochondrial markers fail to separate the species pair F. exsecta Nylander, 1846 and F. fennica despite established morphological differences. The genetic variation within the F. exsecta/fennica group is extensive, but reflects spatial rather than morphological differences. Finnish F. fennica populations studied so far should not be considered a separate species, but merely a morph of F. exsecta.
  • Elshibli, Sakina; Korpelainen, Helena (2021)
    Medemia argun is a wild, dioecious palm, adapted to the harsh arid environment of the Nubian Desert in Sudan and southern Egypt. There is a concern about its conservation status, since little is known about its distribution, abundance, and genetic variation. M. argun grows on the floodplains of seasonal rivers (wadis). The continuing loss of suitable habitats in the Nubian Desert is threatening the survival of this species. We analyzed the genetic diversity, population genetic structure, and occurrence of M. argun populations to foster the development of conservation strategies for M. argun. Genotyping-by-sequencing (GBS) analyses were performed using a whole-genome profiling service. We found an overall low genetic diversity and moderate genetic structuring based on 40 single-nucleotide polymorphisms (SNPs) and 9,866 SilicoDArT markers. The expected heterozygosity of the total population (H-T) equaled 0.036 and 0.127, and genetic differentiation among populations/groups (F-ST) was 0.052 and 0.092, based on SNP and SilicoDArT markers, respectively. Bayesian clustering analyses defined five genetic clusters that did not display any ancestral gene flow among each other. Based on SilicoDArT markers, the results of the analysis of molecular variance (AMOVA) confirmed the previously observed genetic differentiation among generation groups (23%; p < 0.01). Pairwise F-ST values indicated a genetic gap between old and young individuals. The observed low genetic diversity and its loss among generation groups, even under the detected high gene flow, show genetically vulnerable M. argun populations in the Nubian Desert in Sudan. To enrich and maintain genetic variability in these populations, conservation plans are required, including collection of seed material from genetically diverse populations and development of ex situ gene banks.
  • Elshibli, Sakina; Korpelainen, Helena (2018)
    Background: Medemia argun is a rare wild palm tree species. Its global existence is assumed to include the main population of about 1000 trees in the Nubian Desert of Sudan and some scattered individuals in southern Egypt. The species had previously been assumed to be extinct, but then reported to be extant about 20 years ago. Aims: To assess genetic variation and explore population genetic structure of M. argun, through development and analysis of microsatellite markers. Methods: The genome sequence mining approach was applied in order to identify microsatellites in the chloroplast genome of Bismarckia nobilis, a species closely related of M. argun. A set of 49 markers were designed, and their characteristics are now provided. Seven chloroplast DNA markers were developed for use in the genetic characterisation of this threatened species. Results: Five markers were found polymorphic in M. argun, which enabled the assessment of the genetic diversity of the species. Significant genetic differentiation was observed among generations and collection sites, accompanied by low genetic variation. The seven markers developed were polymorphic among the wild relatives Hyphaene thebaica and Borassus aethiopum. Conclusions: This is the first study to report molecular markers for M. argun. Our results suggest that the genetic consequences of population fragmentation in M. argun are beginning to be evident.
  • Pino-Bodas, Raquel; Laakso, Into; Stenroos, Soili (2017)
    Heterocephalacria bachmannii is a lichenicolous fungus that takes as hosts numerous lichen species of the genus Cladonia. In the present study we analyze whether the geographical distance, the host species or the host secondary metabolites determine the genetic structure of this parasite. To address the question, populations mainly from the Southern Europe, Southern Finland and the Azores were sampled. The specimens were collected from 20 different host species representing ten chemotypes. Three loci, ITS rDNA, LSU rDNA and mtSSU, were sequenced. The genetic structure was assessed by AMOVA, redundance analyses and Bayesian clustering methods. The results indicated that the host species and the host secondary metabolites are the most influential factors over the genetic structure of this lichenicolous fungus. In addition, the genetic structure of H. bachmannii was compared with that of one of its hosts, Cladonia rangiformis. The population structure of parasite and host were discordant. The contents in phenolic compounds and fatty acids of C. rangiformis were quantified in order to test whether it had some influence on the genetic structure of the species. But no correlation was found with the genetic clusters of H. bachmannii.
  • Parey, Kristian; Haapanen, Outi; Sharma, Vivek; Köfeler, Harald; Züllig, Thomas; Prinz, Simone; Siegmund, Karin; Wittig, Ilka; Mills, Deryck J.; Vonck, Janet; Kühlbrandt, Werner; Zickermann, Volker (2019)
    Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-angstrom resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.
  • Purhonen, Janne; Rajendran, Jayasimman; Morgelin, Matthias; Uusi-Rauva, Kristiina; Katayama, Shintaro; Krjutskov, Kaarel; Einarsdottir, Elisabet; Velagapudi, Vidya; Kere, Juha; Jauhiainen, Matti; Fellman, Vineta; Kallijarvi, Jukka (2017)
    Mitochondrial disorders are among the most prevalent inborn errors of metabolism but largely lack treatments and have poor outcomes. High-fat, low-carbohydrate ketogenic diets (KDs) have shown beneficial effects in mouse models of mitochondrial myopathies, with induction of mitochondrial biogenesis as the suggested main mechanism. We fed KD to mice with respiratory chain complex III (CIII) deficiency and progressive hepatopathy due to mutated BCS1L, a CIII assembly factor. The mutant mice became persistently ketotic and tolerated the KD for up to 11 weeks. Liver disease progression was attenuated by KD as shown by delayed fibrosis, reduced cell death, inhibition of hepatic progenitor cell response and stellate cell activation, and normalization of liver enzyme activities. Despite no clear signs of increased mitochondrial biogenesis in the liver, CIII assembly and activity were improved and mitochondrial morphology in hepatocytes normalized. Induction of hepatic glutathione transferase genes and elevated total glutathione level were normalized by KD. Histological findings and transcriptome changes indicated modulation of liver macrophage populations by the mutation and the diet. These results reveal a striking beneficial hepatic response to KD in mice with mitochondrial hepatopathy and warrant further investigations of dietary modification in the management of these conditions in patients.
  • Brozzo, Alissa; Harl, Josef; De Mattia, Willy; Teixeira, Dinarte; Walther, Frank; Groh, Klaus; Pall-Gergely, Barna; Glaubrecht, Matthias; Hausdorf, Bernhard; Neiber, Marco T. (2020)
    The Geomitrini is the most species-rich group of land snails in the Madeiran Archipelago. The phylogeny of the group is reconstructed based on mitochondrial and nuclear genetic markers. The timing of diversification, the colonisation history of the islands of the Madeiran Archipelago and the evolution of characters of the dart apparatus are studied. The results of the phylogenetic analyses confirm the sister group relationship of Geomitrini and Cochlicellini, but also show that several previously accepted genus-group taxa are not monophyletic. A new classification for the Geomitrini is proposed, including the description of two new genera, Domunculifex Brozzo, De Mattia, Harl & Neiber, n. gen. and Testudodiscula Brozzo, De Mattia, Harl & Neiber, n. gen. The onset of diversification of Geomitrini was dated in our analysis at 13 Ma, which largely coincides with the emergence of the present-day islands. The ancestral state estimation recovered the presence of two appendiculae in the reproductive system as the ancestral state in Geomitrini. One appendicula was lost three times independently within the tribe and is even missing completely in one group. The ancestral area estimation suggests recurrent colonisations of Madeira (and the Ilhas Desertas) from the older island Porto Santo.
  • Long, Maeve; McWilliams, Thomas G. (2020)
    Autophagy refers to an essential mechanism that evolved to sustain eukaryotic homeostasis and metabolism during instances of nutrient deprivation. During autophagy, intracellular cargo is encapsulated and delivered to the lysosome for elimination. Loss of basal autophagy in vivo negatively impacts cellular proteostasis, metabolism and tissue integrity. Accordingly, many drug development strategies are focused on modulating autophagic capacity in various pathophysiological states, from cancer to neurodegenerative disease. The role of autophagy in cancer is particularly complicated, as either augmenting or attenuating this process can have variable outcomes on cellular survival, proliferation and transformation. This complexity is compounded by the emergence of several selective autophagy pathways, which act to eliminate damaged or superfluous cellular components in a targeted fashion. The advent of sensitive tools to monitor autophagy pathways in vivo holds promise to clarify their importance in cancer pathophysiology. In this review, we provide an overview of autophagy in cancer biology and outline how the development of tools to study autophagy in vivo could enhance our understanding of its function for translational benefit.
  • Geraerts, Mare; Huyse, Tine; Barson, Maxwell; Bassirou, Hassan; Bilong Bilong, Charles F.; Bitja Nyom, Arnold R.; Chocha Manda, Auguste; Cruz-Laufer, Armando J.; Kalombo Kabalika, Clément; Kapepula Kasembele, Gyrhaiss; Muterezi Bukinga, Fidel; Njom, Samuel; Artois, Tom; Vanhove, Maarten (2022)
    The origin of introduced Nile tilapia stocks in sub-Saharan Africa is largely unknown. In this study, the potential of monogeneans as a biological tag and magnifying glass is tested to reveal their hosts' stocking history. The monogenean gill community of different Nile tilapia populations in sub-Saharan Africa was explored, and a phylogeographic analysis was performed based on the mitogenomes of four dactylogyrid species (Cichlidogyrus hani, C. sclerosus, C. thurstonae, and Scutogyrus longicornis). Our results encourage the use of dactylogyrids as biological tags. The magnifying glass hypothesis is only confirmed for C. thurstonae, highlighting the importance of the absence of other potential hosts as prerequisites for a parasite to act as a magnifying glass. With the data generated here, we are the first to extract mitogenomes from individual monogeneans and to perform an upscaled survey of the comparative phylogeography of several monogenean species with unprecedented diagnostic resolution.
  • Geraerts, Mare; Huyse, Tine; Barson, Maxwell; Bassirou, Hassan; Bilong Bilong, Charles F.; Bitja Nyom, Arnold R.; Chocha Manda, Auguste; Cruz-Laufer, Armando J.; Kalombo Kabalika, Clément; Kapepula Kasembele, Gyrhaiss; Muterezi Bukinga, Fidel; Njom, Samuel; Artois, Tom; Vanhove, Maarten (2022)
    The origin of introduced Nile tilapia stocks in sub-Saharan Africa is largely unknown. In this study, the potential of monogeneans as a biological tag and magnifying glass is tested to reveal their hosts' stocking history. The monogenean gill community of different Nile tilapia populations in sub-Saharan Africa was explored, and a phylogeographic analysis was performed based on the mitogenomes of four dactylogyrid species (Cichlidogyrus hani, C. sclerosus, C. thurstonae, and Scutogyrus longicornis). Our results encourage the use of dactylogyrids as biological tags. The magnifying glass hypothesis is only confirmed for C. thurstonae, highlighting the importance of the absence of other potential hosts as prerequisites for a parasite to act as a magnifying glass. With the data generated here, we are the first to extract mitogenomes from individual monogeneans and to perform an upscaled survey of the comparative phylogeography of several monogenean species with unprecedented diagnostic resolution.
  • Korhonen, Eveliina; Piippo, Niina; Hytti, Maria; Hyttinen, Juha M. T.; Kaarniranta, Kai; Kauppinen, Anu (2020)
    Abstract DNA damage accumulates in aged postmitotic retinal pigment epithelium (RPE) cells, a phenomenon associated with the development of age-related macular degeneration. In this study, we have experimentally induced DNA damage by ultraviolet B (UVB) irradiation in interleukin-1α (IL-1α)-primed ARPE-19 cells and examined inflammasome-mediated signaling. To reveal the mechanisms of inflammasome activation, cells were additionally exposed to high levels of extracellular potassium chloride, n-acetyl-cysteine, or mitochondria-targeted antioxidant MitoTEMPO, prior to UVB irradiation. Levels of interleukin-18 (IL-18) and IL-1? mRNAs were detected with qRT-PCR and secreted amounts of IL-1?, IL-18, and caspase-1 were measured with ELISA. The role of nucleotide-binding domain and leucine-rich repeat pyrin containing protein 3 (NLRP3) in UVB-induced inflammasome activation was verified by using the NLRP3-specific siRNA. Reactive oxygen species (ROS) levels were measured immediately after UVB exposure using the cell-permeant 2?,7?-dichlorodihydrofluorescein diacetate (H2DCFDA) indicator, the levels of cyclobutane pyrimidine dimers were assayed by cell-based ELISA, and the extracellular levels of adenosine triphosphate (ATP) determined using a commercial bioluminescence assay. We found that pro-IL-18 was constitutively expressed by ARPE-19 cells, whereas the expression of pro-IL-1? was inducible by IL-1α priming. UVB induced the release of mature IL-18 and IL-1? but NLRP3 contributed only to the secretion of IL-1?. At the mechanistic level, the release of IL-1? was regulated by K+ efflux, whereas the secretion of IL-18 was dependent on ROS production. As well as K+ efflux, the cells released ATP following UVB exposure. Collectively, our data suggest that UVB clearly stimulates the secretion of mature IL-18 as a result of ROS induction, and this response is associated with DNA damage. Moreover, in human RPE cells, K+ efflux mediates the UVB-activated NLRP3 inflammasome signaling, leading to the processing of IL-1?.
  • Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E.; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias; Genetic & Environm Risk Alzheimer' (2015)
    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.
  • Ozgumus, Turkuler; Sulaieva, Oksana; Jessen, Leon Eyrich; Jain, Ruchi; Falhammar, Henrik; Nystrom, Thomas; Catrina, Sergiu-Bogdan; Jorneskog, Gun; Groop, Leif; Eliasson, Mats; Eliasson, Bjorn; Brismar, Kerstin; Stokowy, Tomasz; Nilsson, Peter M.; Lyssenko, Valeriya (2021)
    Type 1 diabetes is a chronic autoimmune disease requiring insulin treatment for survival. Prolonged duration of type 1 diabetes is associated with increased risk of microvascular complications. Although chronic hyperglycemia and diabetes duration have been considered as the major risk factors for vascular complications, this is not universally seen among all patients. Persons with long-term type 1 diabetes who have remained largely free from vascular complications constitute an ideal group for investigation of natural defense mechanisms against prolonged exposure of diabetes. Transcriptomic signatures obtained from RNA sequencing of the peripheral blood cells were analyzed in non-progressors with more than 30 years of diabetes duration and compared to the patients who progressed to microvascular complications within a shorter duration of diabetes. Analyses revealed that non-progressors demonstrated a reduction in expression of the oxidative phosphorylation (OXPHOS) genes, which were positively correlated with the expression of DNA repair enzymes, namely genes involved in base excision repair (BER) machinery. Reduced expression of OXPHOS and BER genes was linked to decrease in expression of inflammation-related genes, higher glucose disposal rate and reduced measures of hepatic fatty liver. Results from the present study indicate that at transcriptomic level reduction in OXPHOS, DNA repair and inflammation-related genes is linked to better insulin sensitivity and protection against microvascular complications in persons with long-term type 1 diabetes.
  • Xu, Enjun; Tikkanen, Mikko; Seyednasrollah, Fatemeh; Kangasjaervi, Saijaliisa; Brosche, Mikael (2022)
    Plants live in a world of changing environments, where they are continuously challenged by alternating biotic and abiotic stresses. To transfer information from the environment to appropriate protective responses, plants use many different signaling molecules and pathways. Reactive oxygen species (ROS) are critical signaling molecules in the regulation of plant stress responses, both inside and between cells. In natural environments, plants can experience multiple stresses simultaneously. Laboratory studies on stress interaction and crosstalk at regulation of gene expression, imply that plant responses to multiple stresses are distinctly different from single treatments. We analyzed the expression of selected marker genes and reassessed publicly available datasets to find signaling pathways regulated by ozone, which produces apoplastic ROS, and high light treatment, which produces chloroplastic ROS. Genes related to cell death regulation were differentially regulated by ozone versus high light. In a combined ozone + high light treatment, the light treatment enhanced ozone-induced cell death in leaves. The distinct responses from ozone versus high light treatments show that plants can activate stress signaling pathways in a highly precise manner.
  • Hikmat, Omar; Naess, Karin; Engvall, Martin; Klingenberg, Claus; Rasmussen, Magnhild; Tallaksen, Chantal M. E.; Samsonsen, Christian; Brodtkorb, Eylert; Ostergaard, Elsebet; de Coo, Rene; Pias-Peleteiro, Leticia; Isohanni, Pirjo; Uusimaa, Johanna; Darin, Niklas; Rahman, Shamima; Bindoff, Laurence A. (2020)
    Objective To study the impact of gender, puberty, and pregnancy on the expression of POLG disease, one of the most common mitochondrial diseases known. Methods Clinical, laboratory, and genetic data were collected retrospectively from 155 patients with genetically confirmed POLG disease recruited from seven European countries. We used the available data to study the impact of gender, puberty, and pregnancy on disease onset and deterioration. Results We found that disease onset early in life was common in both sexes but there was also a second peak in females around the time of puberty. Further, pregnancy had a negative impact with 10 of 14 women (71%) experiencing disease onset or deterioration during pregnancy. Interpretation Gender clearly influences the expression of POLG disease. While onset very early in life was common in both males and females, puberty in females appeared associated both with disease onset and increased disease activity. Further, both disease onset and deterioration, including seizure aggravation and status epilepticus, appeared to be associated with pregnancy. Thus, whereas disease activity appears maximal early in life with no subsequent peaks in males, both menarche and pregnancy appear associated with disease onset or worsening in females. This suggests that hormonal changes may be a modulating factor.
  • Ossa, Gonzalo; Johnson, Joseph S.; Puisto, Anna I. E.; Rinne, Veikko; Sääksjärvi, Ilari E.; Waag, Austin; Vesterinen, Eero J.; Lilley, Thomas M. (2019)
    The Cimicidae is a family of blood-dependent ectoparasites in which dispersion capacity is greatly associated with host movements. Bats are the ancestral and most prevalent hosts for cimicids. Cimicids have a worldwide distribution matching that of their hosts, but the global classification is incomplete, especially for species outside the most common Cimicidae taxa. In this study, we place a little-studied cimicid species, Bucimex chilensis, within a comprehensive molecular phylogeny of Cimicidae by sequencing the genomic regions of this and other closely related species. For this study, we collected B.chilensis females from Myotis chiloensis in Tierra del Fuego, 1,300km further south than previously known southernmost distribution boundary. We also sequenced COI regions from Primicimex cavernis, a species which together with B. chilensis comprise the entire subfamily Primiciminae. Using Bayesian posterior probability and maximum-likelihood approaches, we found that B.chilensis and P.cavernis clustered close to each other in the molecular analyses, receiving support from similar morphological features, agreeing with the morphology-based taxonomic placement of the two species within the subfamily Primiciminae. We also describe a previously unrecognized morphological adaptation of the tarsal structure, which allows the austral bat ectoparasite, B.chilensis, to cling on to the pelage of its known host, the Chilean myotis (Myotis chiloensis). Through a morphological study and behavioral observation, we elucidate how this tarsal structure operates, and we hypothesize that by clinging in the host pelage, B.chilensis is able to disperse effectively to new areas despite low host density. This is a unique feature shared by P.cavernis, the only other species in Primiciminae.