Browsing by Subject "MOLECULE HB-GAM"

Sort by: Order: Results:

Now showing items 1-1 of 1
  • Bleck, Dennis; Ma, Li; Erdene-Bymbadoo, Lkham; Brinks, Ralph; Schneider, Matthias; Tian, Li; Pongratz, Georg (2019)
    In recent years, the role of sympathetic nervous fibers in chronic inflammation has become increasingly evident. At the onset of inflammation, sympathetic activity is increased in the affected tissue. However, sympathetic fibers are largely absent from chronically inflamed tissue. Apparently, there is a very dynamic relationship between sympathetic innervation and the immune system in areas of inflammation, and hence a rapid and easy method for quantification of nerve fiber density of target organs is of great value to answer potential research questions. Currently, nervous fiber densities are either determined by tedious manual counting, which is not suitable for high throughput approaches, or by expensive automated processes relying on specialized software and high-end microscopy equipment. Usually, tyrosine hydroxylase (TH) is used as the marker for sympathetic fibers. In order to overcome the current quantification bottleneck with a cost-efficient alternative, an automated process was established and compared to the classic manual approach of counting TH-positive sympathetic fibers. Since TH is not exclusively expressed on sympathetic fibers, but also in a number of catecholamine-producing cells, a prerequisite for automated determination of fiber densities is to reliably distinct between cells and fibers. Therefore, an additional staining using peripherin exclusively expressed in nervous fibers as a secondary marker was established. Using this novel approach, we studied the spleens from a syndecan-3 knockout (SDC3KO) mouse line, and demonstrated equal results on SNS fiber density for both manual and automated counts (Manual counts: wildtype: 22.57 +/- 11.72 fibers per mm2; ko: 31.95 +/- 18.85 fibers per mm2; p = 0.05; Automated counts: wildtype: 31.6 +/- 18.98 fibers per mm2; ko: 45.49 +/- 19.65 fibers per mm2; p = 0.02). In conclusion, this new and simple method can be used as a high-throughput approach to reliably and quickly estimate SNS nerve fiber density in target tissues.