Browsing by Subject "MONOCYTES"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Heiskala, Marja; Leidenius, Marjut; Joensuu, Kristiina; Heikkilä, Päivi (2019)
    Macrophages are important for the function of the innate immune system, and in solid tumors, they represent a significant proportion of the tumor mass. Tumor-associated macrophages (TAM) have a M2 phenotype and show a multitude of pro-tumoral functions, promoting tumor cell survival, proliferation, and dissemination. CCL2, synthesized by tumor and stromal cells, initiates a chemokine cascade inducing these processes. We studied by immunohistochemistry (IHC) the frequency of TAMs and CCL2 expressing cells in three groups of primary tumor (PT)-recurrence (R) pairs, where relapse was recorded within 2years (group 1), between 5 and 10years (group 2), and after 10years (group 3). In our study all established breast cancers were heavily infiltrated by CD68 positive cells. Both in PTs and in R lesions the infiltration was more abundant in the peritumoral than in the intratumoral stroma. The mean frequency of M2 marker and CD14 positive cells in the intratumoral stroma and CCL2 expressing tumor cells was higher in the Rs as compared to the corresponding PTs. In PTs, a high frequency of CD14 positive cells and a high expression of CCL2 by tumor cells was associated with an early recurrence. The findings support the current understanding of immune cell orchestrated development, progression and metastatic spread of breast cancer. Our study showed that a high frequency of CCL2 positive tumor cells and CD14 positive TAMs are significant risk factors for rapid tumor recurrence. Potential targets for intervention are discussed.
  • Kreutzman, Anna; Yadav, Bhagwan; Brummendorf, Tim H.; Gjertsen, Bjorn Tore; Lee, Moon Hee; Janssen, Jeroen; Kasanen, Tiina; Koskenvesa, Perttu; Lotfi, Kourosh; Markevärn, Berit; Olsson-Stromberg, Ulla; Stentoft, Jesper; Stenke, Leif; Söderlund, Stina; Udby, Lene; Richter, Johan; Hjörth-Hansen, Henrik; Mustjoki, Satu (2019)
    Changes in the immune system induced by tyrosine kinase inhibitors (TKI) have been shown to positively correlate with therapy responses in chronic myeloid leukemia (CML). However, only a few longitudinal studies exist and no randomized comparisons between two TKIs have been reported. Therefore, we prospectively analyzed the immune system of newly diagnosed CML patients treated with imatinib (n = 20) or bosutinib (n = 13), that participated in the randomized BFORE trial (NCT02130557). Comprehensive immunophenotyping, plasma protein profiling, and functional assays to determine activation levels of T and NK cells were performed at diagnosis, 3, and 12 months after therapy start. All results were correlated with clinical parameters such as Sokal risk and BCR-ABL load measured according to IS%. At diagnosis, low Sokal risk CML patients had a higher frequency of cytotoxic cells (CD8 + T and NK cells), increased cytotoxic potential of NK cells and lower frequency of naive and central memory CD4 + T cells. Further, soluble plasma protein profile divided patients into two distinct clusters with different disease burden at diagnosis. During treatment, BCR-ABL IS% correlated with immunological parameters such as plasma proteins, together with different memory subsets of CD4+ and CD8 + T cells. Interestingly, the proportion and cytotoxic potential of NK cells together with several soluble proteins increased during imatinib treatment. In contrast, no major immunological changes were observed during bosutinib treatment. In conclusion, imatinib and bosutinib were shown to have differential effects on the immune system in this randomized clinical trial. Increased number and function of NK cells were especially observed during imatinib therapy.
  • Poon, W. L.; Alenius, Harri; Ndika, Joseph; Fortino, Vittorio; Kolhinen, Vesa; Mesceriakovas, Arunas; Wang, Mingfu; Greco, Dario; Lähde, Anna; Jokiniemi, Jorma; Lee, Jetty Chung-Yung; El-Nezami, Hani; Karisola, Piia (2017)
    Nano-sized metal oxides are currently the most manufactured nanomaterials (NMs), and are increasingly used in consumer products. Recent exposure data reveal a genuine potential for adverse health outcomes for a vast array of NMs, however the underlying mechanisms are not fully understood. To elucidate size-related molecular effects, differentiated THP-1 cells were exposed to nano-sized materials (n-TiO2, n-ZnO and n-Ag), or their bulk-sized (b-ZnO and b-TiO2) or ionic (i-Ag) counterparts, and genome-wide gene expression changes were studied at low-toxic concentrations (
  • Poon, Wing-Lam; Lee, Jetty Chung-Yung; Leung, Kin Sum; Alenius, Harri; El-Nezami, Hani; Karisola, Piia (2020)
    Bioactive, oxygenated metabolites of polyunsaturated fatty acids (PUFAs) are important indicators of inflammation and oxidative stress but almost nothing is known about their interactions with nanomaterials (NMs). To investigate the effects of nano-sized materials (n-TiO2, n-ZnO, n-Ag) and their bulk-sized or ionic (b-TiO2, b-ZnO, i-Ag) counterpart, we studied the status of oxidative stress and PUFA metabolism in THP-1 cells at low-toxic concentrations (