Browsing by Subject "MOUNTAIN LAKES"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Milardi, Marco; Lappalainen, Jyrki; McGowan, Suzanne; Weckström, Jan (2017)
    The additional input and enhanced cycling of nutrients derived from introduced fish can be a significant factor altering nutrient dynamics in oligotrophic lakes. To test this, we used a bioenergetic model to estimate the fish-derived nutrient load in Lake Kuutsjurvi, a historically fishless boreal lake of northern Fennoscandia. The lake was selected because of the absence of other anthropogenic stressors, a known stocking history and the possibility of quantitatively estimating the size-structure and biomass of the fish population through a mass removal. Subsequently, we used a mass balance model to compare fish-derived nutrients with other nutrient load pathways. For comparison over longer timescales, we used lake sediment records of diatoms, chlorophyll and carotenoid pigments, C: N ratios and stable isotopes to infer whether fish introduction produced detectable changes in the lake trophic state, primary productivity and terrestrial nutrient input. Based on the nutrient mass balance model, we found that phosphorus and nitrogen derived from fish were 0.46% and 2.2%, respectively, of the total load to the lake, suggesting that fish introduction could not markedly increase the nutrient load. Accordingly, the palaeolimnological record indicated little increase in primary production but instead a shift from pelagic to benthic production after fish introduction.
  • Teittinen, Anette; Wang, Jianjun; Stromgard, Simon; Soininen, Janne (2017)
    Aim: Elevational biodiversity patterns are understudied in high-latitude aquatic systems, even though these systems are important for detecting very early impacts of climatic changes on Earth. The aim of this study was to examine the elevational trends in species richness and local contribution to beta diversity (LCBD) of three biofilm microbial groups in freshwater ponds and to identify the key mechanisms underlying these patterns. Location: One hundred and forty-six ponds in subarctic Finland and Norway distributed across the tree line along an elevational gradient of 10-1,038 m a.s.l., spanning from forested landscape to barren boulder fields. Time period: July-August 2015. Major taxa studied: Diatoms, cyanobacteria and non-cyanobacteria. Methods: Generalized linear models were used to identify the most important pond variables explaining richness and LCBD. Structural equation models were used to explore the direct and indirect effects of multiscale drivers on richness and LCBD. Results: Diatom and cyanobacteria richness showed unimodal elevational patterns, whereas non-cyanobacteria richness decreased with increasing elevation. The LCBD-elevation relationship was U-shaped for all three microbial groups. Diatom and cyanobacteria richness and LCBD were best explained by local pond variables, especially by pH. Non-cyanobacteria richness and LCBD were related to pond variables, elevation as a proxy for climatic conditions, and normalized difference vegetation index as a proxy for terrestrial productivity. Main conclusions: Aquatic autotrophs were primarily controlled by environmental filtering, whereas heterotrophic bacteria were also affected by terrestrial productivity and elevation. All studied aspects of microbial diversity were directly or indirectly linked to elevation; therefore, climatic changes may greatly alter aquatic microbial assemblages.