Browsing by Subject "MOUSE MODEL"

Sort by: Order: Results:

Now showing items 1-20 of 51
  • McWilliams, Thomas G.; Prescott, Alan R.; Villarejo-Zori, Beatriz; Ball, Graeme; Boya, Patricia; Ganleya, Ian G. (2019)
    Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used.
  • Guzman, Erika Avendano; Bouter, Yvonne; Richard, Bernhard C.; Lannfelt, Lars; Ingelsson, Martin; Paetau, Anders; Verkkoniemi-Ahola, Auli; Wirths, Oliver; Bayer, Thomas A. (2014)
  • Hentila, Jaakko; Nissinen, Tuuli A.; Korkmaz, Ayhan; Lensu, Sanna; Silvennoinen, Mika; Pasternack, Arja; Ritvos, Olli; Atalay, Mustafa; Hulmi, Juha J. (2019)
    Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1-2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1-2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p <0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 <0.05), phosphorylated elF2 alpha <0.01) and HSP47 (p <0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p <0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-elF2 alpha, HSP47, p-JNK; p <0.05) and antioxidant GSH (p <0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p <0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p <0.05), Beclin-1 (p <0.01), and P62 (p <0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-elF2 alpha and GRP78, increased (p <0.05), whereas ATF4 was strongly decreased (p <0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
  • Rajendran, Jayasimman; Purhonen, Janne; Tegelberg, Saara; Smolander, Olli-Pekka; Mörgelin, Matthias; Rozman, Jan; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabe; Auvinen, Petri; Mervaala, Eero; Jacobs, Howard T.; Szibor, Marten; Fellman, Vineta; Kallijärvi, Jukka (2019)
    Alternative oxidase (AOX) is a non-mammalian enzyme that can bypass blockade of the complex III-IV segment of the respiratory chain (RC). We crossed a Ciona intestinalis AOX transgene into RC complex III (cIII)-deficient Bcs1l(p.S78G) knock-in mice, displaying multiple visceral manifestations and premature death. The homozygotes expressing AOX were viable, and their median survival was extended from 210 to 590 days due to permanent prevention of lethal cardiomyopathy. AOX also prevented renal tubular atrophy and cerebral astrogliosis, but not liver disease, growth restriction, or lipodystrophy, suggesting distinct tissue-specific pathogenetic mechanisms. Assessment of reactive oxygen species (ROS) production and damage suggested that ROS were not instrumental in the rescue. Cardiac mitochondrial ultrastructure, mitochondrial respiration, and pathological transcriptome and metabolome alterations were essentially normalized by AOX, showing that the restored electron flow upstream of cIII was sufficient to prevent cardiac energetic crisis and detrimental decompensation. These findings demonstrate the value of AOX, both as a mechanistic tool and a potential therapeutic strategy, for cIII deficiencies.
  • Keuters, Meike Hedwig; Keksa-Goldsteine, Velta; Dhungana, Hiramani; Huuskonen, Mikko T.; Pomeshchik, Yuriy; Savchenko, Ekaterina; Korhonen, Paula K.; Singh, Yajuvinder; Wojciechowski, Sara; Lehtonen, Sarka; Kanninen, Katja M.; Malm, Tarja; Sirviö, Jouni; Muona, Anu; Koistinaho, Milla; Goldsteins, Gundars; Koistinaho, Jari (2021)
    Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.
  • Hlushchenko, Iryna; Khanal, Pushpa; Abouelezz, Amr; Paavilainen, Ville O.; Hotulainen, Pirta (2018)
    Many actin cytoskeleton-regulating proteins control dendritic spine morphology and density, which are cellular features often altered in autism spectrum disorder (ASD). Recent studies using animal models show that autism-related behavior can be rescued by either manipulating actin regulators or by reversing dendritic spine density or morphology. Based on these studies, the actin cytoskeleton is a potential target pathway for developing new ASD treatments. Thus, it is important to understand how different ASD-associated actin regulators contribute to the regulation of dendritic spines and how ASD-associated mutations modulate this regulation. For this study, we selected five genes encoding different actin-regulating proteins and induced ASD-associated de novo missense mutations in these proteins. We assessed the functionality of the wild-type and mutated proteins by analyzing their subcellular localization, and by analyzing the dendritic spine phenotypes induced by the expression of these proteins. As the imbalance between excitation and inhibition has been suggested to have a central role in ASD, we additionally evaluated the density, size and subcellular localization of inhibitory synapses. Common for all the proteins studied was the enrichment in dendritic spines. ASD-associated mutations induced changes in the localization of alpha-actinin-4, which localized less to dendritic spines, and for SWAP-70 and SrGAP3, which localized more to dendritic spines. Among the wild-type proteins studied, only alpha-actinin-4 expression caused a significant change in dendritic spine morphology by increasing the mushroom spine density and decreasing thin spine density. We hypothesized that mutations associated with ASD shift dendritic spine morphology from mushroom to thin spines. An M554V mutation in alpha-actinin-4 (ACTN4) resulted in the expected shift in dendritic spine morphology by increasing the density of thin spines. In addition, we observed a trend toward higher thin spine density withmutations inmyosin IXb and SWAP-70. Myosin IIb and myosin IXb expression increased the proportion of inhibitory synapses in spines. The expression of mutated myosin IIb (Y265C), SrGAP3 (E469K), and SWAP-70 (L544F) induced variable changes in inhibitory synapses.
  • Oksanen, Minna; Lehtonen, Sarka; Jaronen, Merja; Goldsteins, Gundars; Hämäläinen, Riikka H.; Koistinaho, Jari (2019)
    Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood–brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
  • Peteri, Ulla-Kaisa; Niukkanen, Mikael; Castren, Maija L. (2019)
    To an increasing extent, astrocytes are connected with various neuropathologies. Astrocytes comprise of a heterogeneous population of cells with region- and species-specific properties. The frontal cortex exhibits high levels of plasticity that is required for high cognitive functions and memory making this region especially susceptible to damage. Aberrations in the frontal cortex are involved with several cognitive disorders, including Alzheimer's disease, Huntington's disease and frontotemporal dementia. Human induced pluripotent stem cells (iPSCs) provide an alternative for disease modeling and offer possibilities for studies to investigate pathological mechanisms in a cell type-specific manner. Patient-specific iPSC-derived astrocytes have been shown to recapitulate several disease phenotypes. Addressing astrocyte heterogeneity may provide an improved understanding of the mechanisms underlying neurodegenerative diseases.
  • Mauramo, Matti; Onali, Tuulia; Wahbi, Wafa; Vasara, Jenni; Lampinen, Anniina; Mauramo, Elina; Kivimäki, Anne; Martens, Stefan; Häggman, Hely; Sutinen, Meeri; Salo, Tuula (2021)
    Previous studies indicate that bilberry with high amounts of phenolic compounds can inhibit carcinogenic processes of colorectal cancer in vitro and in vivo. However, no studies have focused on the effects of bilberry on oral cancer. In this study, we aimed to examine the effects of bilberry powder on oral squamous cell carcinoma (OSCC) cells using both in vitro and in vivo assays. The effects of 0, 1, 10, and 25 mg/mL of whole bilberry powder on the viability, proliferation, migration, and invasion of OSCC (HSC-3) cells were examined and compared with 0.01 mg/mL of cetuximab. Two oral keratinocyte cell lines served as controls. Tumor area was analyzed in zebrafish microinjected with HSC-3 cells and treated with 2.5, 10, or 25 mu g/mL of bilberry powder. Metastases in the head or tail areas were counted. Bilberry powder inhibited the viability, proliferation, migration, and invasion of HSC-3 cells (p < 0.05), which was more pronounced with higher concentrations. Cetuximab had no effect on HSC-3 cell migration or invasion. Compared to controls, the tumor area in zebrafish treated with bilberry powder (10 and 25 mu g/mL) was reduced significantly (p = 0.038 and p = 0.021, respectively), but the number of fish with metastases did not differ between groups. Based on our in vitro and in vivo experiments, we conclude that whole bilberry powder has anti-tumor effects on OSCC cells.
  • Sidorova, Yulia A.; Saarma, Mart (2020)
    Growth factors (GFs) hold considerable promise for disease modification in neurodegenerative disorders because they can protect and restore degenerating neurons and also enhance their functional activity. However, extensive efforts applied to utilize their therapeutic potential in humans have achieved limited success so far. Multiple clinical trials with GFs were performed in Parkinson's disease (PD) patients, in whom diagnostic symptoms of the disease are caused by advanced degeneration of nigrostriatal dopamine neurons (DNs), but the results of these trials are controversial. This review discusses recent developments in the field of therapeutic use of GFs, problems and obstacles related to this use, suggests the ways to overcome these issues, and alternative approaches that can be used to utilize the potential of GFs in PD management.
  • Al Kamaly, Omkulthom; Saleh, Asmaa; Al Sfouk, Aisha; Alanazi, Ashwag S.; Parvez, Mohammad Khalid; Ousaaid, Driss; Assouguem, Amine; Mechchate, Hamza; Bouhrim, Mohamed (2022)
    Cedrus atlantica (Endl.) Manetti ex Carriere is an endemic tree with spiritual value, and it was used since immemorial time in folk medicine. The present study aims to evaluate the anti-inflammatory (carrageenan-induced paw edema and formalin tests) and analgesic effects (hot plate and acetic acid writhing tests) of the cedarwood essential oil, as well as inspect any toxicity (acute toxicity), using several in vivo assays. Following the acetic acid writhing test and the hot plate test, the EO presented an excellent analgesic effect compared to the controls, especially with the dose of 50 mg/kg. Similar results were found while assessing the anti-inflammatory potential in the carrageenan-induced paw edema and formalin assays. The acute toxicity assessment and the subsequent monitoring of the animals, the biochemical analysis, and the relative organ weight, demonstrated a total safety of the EO. The GC/MS analysis of the composition revealed that the major compounds contained in this EO are beta-himachalene (51.95%), followed by alpha-himachalene (15.82%), and gamma-himachalene (12.15%). This study supports the usage of this tree EO to alleviate pain and inflammation.
  • Stepanova, P.; Srinivasan, V.; Lindholm, D.; Voutilainen, M. H. (2020)
    Huntington's disease (HD) is a neurodegenerative disorder with a progressive loss of medium spiny neurons in the striatum and aggregation of mutant huntingtin in the striatal and cortical neurons. Currently, there are no rational therapies for the treatment of the disease. Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) located protein with neurotrophic factor (NTF) properties, protecting and restoring the function of dopaminergic neurons in animal models of PD more effectively than other NTFs. CDNF is currently in phase I-II clinical trials on PD patients. Here we have studied whether CDNF has beneficial effects on striatal neurons in in vitro and in vivo models of HD. CDNF was able to protect striatal neurons from quinolinic acid (QA)-induced cell death in vitro via increasing the IRE1 alpha/XBP1 signalling pathway in the ER. A single intrastriatal CDNF injection protected against the deleterious effects of QA in a rat model of HD. CDNF improved motor coordination and decreased ataxia in QA-toxin treated rats, and stimulated the neurogenesis by increasing doublecortin (DCX)-positive and NeuN-positive cells in the striatum. These results show that CDNF positively affects striatal neuron viability reduced by QA and signifies CDNF as a promising drug candidate for the treatment of HD.
  • Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki (2016)
    Alport syndrome is caused by mutations in the genes encoding alpha 3, alpha 4, or alpha 5 (IV) chains. Unlike X-linked Alport mice, alpha 5 and alpha 6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both alpha 3 and alpha 6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 x 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 x 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The alpha 5 and alpha 6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although a5 and a6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role.
  • Mustonen, Tuuli; Schmidt, Eeva-Kaisa; Valori, Miko; Tienari, Pentti J.; Atula, Sari; Kiuru-Enari, Sari (2018)
    Finnish gelsolin amyloidosis (AGel amyloidosis) is an autosomal dominantly inherited systemic disorder with ophthalmologic, neurologic and dermatologic symptoms. Only the gelsolin (GSN) c.640G>A variant has been found in the Finnish patients thus far. The purpose of this study was to examine whether the Finnish patients have a common ancestor or whether multiple mutation events have occurred at c.640G, which is a known mutational hot spot. A total of 79 Finnish AGel amyloidosis families including 707 patients were first discovered by means of patient interviews, genealogic studies and civil and parish registers. From each family 1-2 index patients were chosen. Blood samples were available from 71 index patients representing 64 families. After quality control, SNP array genotype data were available from 68 patients from 62 nuclear families. All the index patients had the same c.640G>A variant (rs121909715). Genotyping was performed using the Illumina CoreExome SNP array. The homozygosity haplotype method was used to analyse shared haplotypes. Haplotype analysis identified a shared haplotype, common to all studied patients. This shared haplotype included 17 markers and was 361 kb in length (GRCh37 coordinates 9:124003326–124364349) and this level of haplotype sharing was found to occur highly unlikely by chance. This GSN haplotype ranked as the largest shared haplotype in the 68 patients in a genome-wide analysis of haplotype block lengths. These results provide strong evidence that although there is a known mutational hot spot at GSN c.640G, all of the studied 62 Finnish AGel amyloidosis families are genetically linked to a common ancestor.
  • Maldonado, Rocio; Jalil, Sami; Keskinen, Timo; Nieminen, Anni I.; Hyvönen, Mervi E.; Lapatto, Risto; Wartiovaara, Kirmo (2022)
    Hyperornithinemia with gyrate atrophy of the choroid and retina (HOGA) is a severe recessive inherited disease, causing muscular degeneration and retinochoroidal atrophy that progresses to blindness. HOGA arises from mutations in the ornithine aminotransferase (OAT) gene, and nearly one-third of the known patients worldwide are homozygous for the Finnish founder mutation OAT c.1205 T > C p.(Leu402Pro). We have corrected this loss of-function OAT mutation in patient-derived induced pluripotent stem cells (iPSCs) using CRISPR/Cas9. The correction restored OAT expression in stem cells and normalized the elevated ornithine levels in cell lysates and cell media. These results show an efficient recovery of OAT function in iPSC, encouraging the possibility of autologous cell therapy for the HOGA disease.
  • Choo, Xin Yi; Liddell, Jeffrey R.; Huuskonen, Mikko T.; Grubman, Alexandra; Moujalled, Diane; Roberts, Jessica; Kysenius, Kai; Patten, Lauren; Quek, Hazel; Oikari, Lotta E.; Duncan, Clare; James, Simon A.; McInnes, Lachlan E.; Hayne, David J.; Donnelly, Paul S.; Pollari, Eveliina; Vähätalo, Suvi; Lejavova, Katarina; Kettunen, Mikko; Malm, Tarja; Koistinaho, Jari; White, Anthony R.; Kanninen, Katja M. (2018)
    Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex Cu-II(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of Cu-II(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). Cu-II(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of Cu-II(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.
  • Patel, Tirth K.; Habimana-Griffin, LeMoyne; Gao, Xuefeng; Xu, Baogang; Achilefu, Samuel; Alitalo, Kari; McKee, Celia A.; Sheehan, Patrick W.; Musiek, Erik S.; Xiong, Chengjie; Coble, Dean; Holtzman, David M. (2019)
    BackgroundAlzheimer's disease is characterized by two main neuropathological hallmarks: extracellular plaques of amyloid- (A) protein and intracellular aggregates of tau protein. Although tau is normally a soluble monomer that bind microtubules, in disease it forms insoluble, hyperphosphorylated aggregates in the cell body. Aside from its role in AD, tau is also involved in several other neurodegenerative disorders collectively called tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), some forms of frontotemporal dementia, and argyrophilic grain disease (AGD). The prion hypothesis suggests that after an initial trigger event, misfolded forms of tau are released into the extracellular space, where they spread through different brain regions, enter cells, and seeding previously normal forms. Thus understanding mechanisms regulating the clearance of extracellular tau from the CNS is important. The discovery of a true lymphatic system in the dura and its potential role in mediating A pathology prompted us to investigate its role in regulating extracellular tau clearance.MethodsTo study clearance of extracellular tau from the brain, we conjugated monomeric human tau with a near-infrared dye cypate, and injected this labeled tau in the parenchyma of both wild-type and K14-VEGFR3-Ig transgenic mice, which lack a functional CNS lymphatic system. Following injection we performed longitudinal imaging using fluorescence molecular tomography (FMT) and quantified fluorescence to calculate clearance of tau from the brain. To complement this, we also measured tau clearance to the periphery by measuring plasma tau in both groups of mice.ResultsOur results show that a significantly higher amount of tau is retained in the brains of K14-VEGFR3-Ig vs. wild type mice at 48 and 72h post-injection and its subsequent clearance to the periphery is delayed. We found that clearance of reference tracer human serum albumin (HSA) was also significantly delayed in the K14-VEGFR3-Ig mice.ConclusionsThe dural lymphatic system appears to play an important role in clearance of extracellular tau, since tau clearance is impaired in the absence of functional lymphatics. Based on our baseline characterization of extracellular tau clearance, future studies are warranted to look at the interaction between tau pathology and efficiency of lymphatic function.
  • Zega, Ksenija; Jovanovic, Vukasin M.; Vitic, Zagorka; Niedzielska, Magdalena; Knaapi, Laura; Jukic, Marin M.; Partanen, Juha; Friedel, Roland F.; Lang, Roland; Brodski, Claude (2017)
    Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16 =) developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16 = mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF) outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16 = mutants as a cause of progenitor overproliferation during midgestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.
  • Danesi, Claudia Elisabetta; Keinänen, Kari Pekka; Castren, Maija Liisa (2019)
    Fragile X syndrome (FXS) is a neurodevelopmental disorder that represents a common cause of intellectual disability and is a variant of autism spectrum disorder (ASD). Studies that have searched for similarities in syndromic and non-syndromic forms of ASD have paid special attention to alterations of maturation and function of glutamatergic synapses. Copy number variations (CNVs) in the loci containing genes encoding alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) subunits are associated with ASD in genetic studies. In FXS, dysregulated AMPAR subunit expression and trafficking affect neural progenitor differentiation and synapse formation and neuronal plasticity in the mature brain. Decreased expression of GluA2, the AMPAR subunit that critically controls Ca2+-permeability, and a concomitant increase in Ca2+-permeable AMPARs (CP-AMPARs) in human and mouse FXS neural progenitors parallels changes in expression of GluA2-targeting microRNAs (miRNAs). Thus, posttranscriptional regulation of GluA2 by miRNAs and subsequent alterations in calcium signaling may contribute to abnormal synaptic function in FXS and, by implication, in some forms of ASD.
  • Zhang, Christine R.; Kurniawan, Nyoman D.; Yamada, Lisa; Fleming, Whitney; Kaminen-Ahola, Nina; Ahola, Arttu; Galloway, Graham; Chong, Suyinn (2019)
    We examined whether an early-life event ethanol exposure in the initial stages of pregnancy affected offspring brain structure, energy metabolism, and body composition in later life. Consumption of 10% (v/v) ethanol by inbred C57BL/6J female mice from 0.5 to 8.5 days post coitum was used to model alcohol exposure during the first 3-4 weeks of gestation in humans, when pregnancy is not typically recognized. At adolescence (postnatal day [P] 28) and adulthood (P64), the brains of male offspring were scanned ex vivo using ultra-high field (16.4 T) magnetic resonance imaging and diffusion tensor imaging. Energy metabolism and body composition were measured in adulthood by indirect calorimetry and dual energy X-ray absorptiometry (DXA), respectively. Ethanol exposure had no substantial impact on white matter organization in the anterior commissure, corpus callosum, hippocampal commissure, internal capsule, optic tract, or thalamus. Whole brain volume and the volumes of the neocortex, cerebellum, and caudate putamen were also unaffected. Subtle, but non-significant, effects were observed on the hippocampus and the hypothalamus in adult ethanol-exposed male offspring. Ethanol exposure was additionally associated with a trend toward decreased oxygen consumption, carbon dioxide production, and reduced daily energy expenditure, as well as significantly increased adiposity, albeit with normal body weight and food intake, in adult male offspring. In summary, ethanol exposure restricted to early gestation had subtle long-term effects on the structure of specific brain regions in male offspring. The sensitivity of the hippocampus to ethanol-induced damage is reminiscent of that reported by other studies despite differences in the level, timing, and duration of exposure and likely contributes to the cognitive impairment that characteristically results from prenatal ethanol exposure. The hypothalamus plays an important role in regulating metabolism and energy homeostasis. Our finding of altered daily energy expenditure and adiposity in adult ethanol-exposed males is consistent with the idea that central nervous system abnormalities also underpin some of the metabolic phenotypes associated with ethanol exposure in pregnancy. (C) 2018 Elsevier Inc. All rights reserved.