Browsing by Subject "MSN"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Kantola, Tuula; Vastaranta, Mikko; Yu, Xiaowei; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Markus; Talvitie, Mervi; Kaasalainen, Sanna; Solberg, Svein; Hyyppä, Juha (2010)
    Climate change and rising temperatures have been observed to be related to the increase of forest insect damage in the boreal zone. The common pine sawfly (Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini can cause severe growth loss and tree mortality in Scots pine (Pinus sylvestris L.) (Pinaceae). In this study, logistic LASSO regression, Random Forest (RF) and Most Similar Neighbor method (MSN) were investigated for predicting the defoliation level of individual Scots pines using the features derived from airborne laser scanning (ALS) data and aerial images. Classification accuracies from 83.7% (kappa 0.67) to 88.1% (kappa 0.76) were obtained depending on the method. The most accurate result was produced using RF with a combination of data from the two sensors, while the accuracies when using ALS and image features separately were 80.7% and 87.4%, respectively. Evidently, the combination of ALS and aerial images in detecting needle losses is capable of providing satisfactory estimates for individual trees.
  • Juvonen, Minna Katriina; Kotiranta, Markus; Jokela, Jouni Kalevi; Tuomainen, Päivi; Tenkanen, Tiina Maija (2019)
    Recent works provide evidence of the prebiotic potential of arabinoxylan-derived oligosaccharides (A)XOS. In this study, we developed a structural analysis for cereal-derived (A)XOS by negative ionization HILIC-MS/MS. Initially, we assessed twelve (A)XOS samples of known structures with different linkage positions and branching points by direct-infusion negative ESI-MSn. We subsequently developed the negative ion HILIC-MS/MS with a post-column addition of ammonium chloride. The selected (A)XOS represented both linear (arabinofuranosyl residue linked to the non-reducing end of xylooligosaccharide) and branched structures. Each (A)XOS sample produced a specific spectrum in negative ion ESI-MSn. By analyzing cross-ring fragment ions, we determined the linkage positions of linear (A)XOS. The presence or absence of diagnostic ions in the MS3 allowed us to detect different branches (O-2- or/and O-3-linked arabinofuranosyl with/or without O-4-linked xylopyranosyl at the non-reducing end). Furthermore, we could identify all analyzed samples by HILIC-MS/MS, based on the formed spectral library and chromatographic retention times.