Browsing by Subject "MUTATION-RATE"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Warmuth, Vera M.; Burgess, Malcolm D.; Laaksonen, Toni; Manica, Andrea; Magi, Marko; Nord, Andreas; Primmer, Craig R.; Saetre, Glenn-Peter; Winkel, Wolfgang; Ellegren, Hans (2021)
    Climate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers (Ficedula hypoleuca). Using a combination of demographic inference and species distribution modelling, we show that all major population splits in this forest-dependent system occurred during periods of increased climate instability and rapid global temperature change. We show that the divergent Spanish subspecies originated during the Eemian-Weichselian transition 115-104 thousand years ago (kya), and not during the last glacial maximum (26.5-19 kya), as previously suggested. The magnitude and rates of climate change during the glacial-interglacial transitions that preceded population splits in pied flycatchers were similar to, or exceeded, those predicted to occur in the course of the current, human-induced climate crisis. As such, our results provide a timely reminder of the strong impact that episodes of climate instability and rapid temperature changes can have on species' evolutionary trajectories, with important implications for the natural world in the Anthropocene.
  • Lorente-Galdos, Belen; Lao, Oscar; Serra-Vidal, Gerard; Santpere, Gabriel; Kuderna, Lukas F. K.; Arauna, Lara R.; Fadhlaoui-Zid, Karima; Pimenoff, Ville N.; Soodyall, Himla; Zalloua, Pierre; Marques-Bonet, Tomas; Comas, David (2019)
    BackgroundPopulation demography and gene flow among African groups, as well as the putative archaic introgression of ancient hominins, have been poorly explored at the genome level.ResultsHere, we examine 15 African populations covering all major continental linguistic groups, ecosystems, and lifestyles within Africa through analysis of whole-genome sequence data of 21 individuals sequenced at deep coverage. We observe a remarkable correlation among genetic diversity and geographic distance, with the hunter-gatherer groups being more genetically differentiated and having larger effective population sizes throughout most modern-human history. Admixture signals are found between neighbor populations from both hunter-gatherer and agriculturalists groups, whereas North African individuals are closely related to Eurasian populations. Regarding archaic gene flow, we test six complex demographic models that consider recent admixture as well as archaic introgression. We identify the fingerprint of an archaic introgression event in the sub-Saharan populations included in the models (similar to 4.0% in Khoisan, similar to 4.3% in Mbuti Pygmies, and similar to 5.8% in Mandenka) from an early divergent and currently extinct ghost modern human lineage.ConclusionThe present study represents an in-depth genomic analysis of a Pan African set of individuals, which emphasizes their complex relationships and demographic history at population level.