Browsing by Subject "MUTATIONS"

Sort by: Order: Results:

Now showing items 1-20 of 242
  • Vakkilainen, Svetlana; Constantini, Alice; Taskinen, Mervi; Wartiovaara-Kautto, Ulla; Mäkitie, Outi (2019)
  • Nemaline Working Grp; Neuhaus, Sarah B.; Wallgren-Pettersson, Carina; Bönnemann, Carsten G.; Schara, Ulrike; Servais, Laurent (2020)
  • Mehine, Miika; Khamaiseh, Sara; Ahvenainen, Terhi; Heikkinen, Tuomas; Äyräväinen, Anna; Pakarinen, Päivi; Härkki, Päivi; Pasanen, Annukka; Bützow, Ralf; Vahteristo, Pia (2020)
    Simple Summary Uterine leiomyomas are benign smooth muscle tumors affecting millions of women globally. On a molecular level, leiomyomas can be classified into three main subtypes, each characterized by mutations affecting either MED12, HMGA2, or FH. Leiomyomas are still widely regarded as a single entity, although early observations suggest that different subtypes behave differently, in terms of both clinical outcomes and therapeutic requirements. The majority of classification studies on leiomyomas have been performed using fresh frozen tissue. Archival formalin-fixed paraffin-embedded (FFPE) tissue represents an invaluable source of biological material that can be studied retrospectively. Methods capable of generating high-quality data from FFPE material are in high demand. Here, we show that 3 ' RNA sequencing can accurately classify leiomyomas that have been stored as FFPE tissue in hospital archives for years. A targeted 3 ' RNA sequencing panel could provide researchers and clinicians with a cost-effective and scalable diagnostic tool for classifying smooth muscle tumors. Uterine leiomyomas are benign smooth muscle tumors occurring in 70% of women of reproductive age. The majority of leiomyomas harbor one of three well-established genetic changes: a hotspot mutation in MED12, overexpression of HMGA2, or biallelic loss of FH. The majority of studies have classified leiomyomas by complex and costly methods, such as whole-genome sequencing, or by combining multiple traditional methods, such as immunohistochemistry and Sanger sequencing. The type of specimens and the amount of resources available often determine the choice. A more universal, cost-effective, and scalable method for classifying leiomyomas is needed. The aim of this study was to evaluate whether RNA sequencing can accurately classify formalin-fixed paraffin-embedded (FFPE) leiomyomas. We performed 3 ' RNA sequencing with 44 leiomyoma and 5 myometrium FFPE samples, revealing that the samples clustered according to the mutation status of MED12, HMGA2, and FH. Furthermore, we confirmed each subtype in a publicly available fresh frozen dataset. These results indicate that a targeted 3 ' RNA sequencing panel could serve as a cost-effective and robust tool for stratifying both fresh frozen and FFPE leiomyomas. This study also highlights 3 ' RNA sequencing as a promising method for studying the abundance of unexploited tissue material that is routinely stored in hospital archives.
  • Harris, Elizabeth; Töpf, Ana; Vihola, Anna; Evilä, Anni; Barresi, Rita; Hudson, Judith; Hackman, Peter; Herron, Brian; MacArthur, Daniel; Lochmüller, Hanns; Bushby, Kate; Udd, Bjarne; Straub, Volker (2017)
    Mutations in the gene encoding the giant skeletal muscle protein titin are associated with a variety of muscle disorders, including recessive congenital myopathies cardiomyopathy, limb girdle muscular dystrophy (LGMD) and late onset dominant distal myopathy. Heterozygous truncating mutations have also been linked to dilated cardiomyopathy. The phenotypic spectrum of titinopathies is emerging and expanding, as next generation sequencing techniques make this large gene amenable to sequencing. We undertook whole exome sequencing in four individuals with LGMD. An essential splice site mutation, previously reported in dilated cardiomyopathy, was identified in all families in combination with a second truncating mutation. Affected individuals presented with childhood onset proximal weakness associated with joint contractures and elevated CK. Cardiac dysfunction was present in two individuals. Muscle biopsy showed increased internal nuclei and immunoblotting identified reduction or absence of calpain-3 and demonstrated a marked reduction of C-terminal titin fragments. We confirm the co-occurrence of cardiac and skeletal myopathies associated with recessive truncating titin mutations. Compound heterozygosity of a truncating mutation previously associated with dilated cardiomyopathy and a 'second truncation' in TTN was identified as causative in our skeletal myopathy patients. These findings add to the complexity of interpretation and genetic counselling for titin mutations. (C) 2017 Elsevier B.V. All rights reserved.
  • Vakkilainen, Svetlana; Taskinen, Mervi; Klemetti, Paula; Pukkala, Eero; Mäkitie, Outi (2019)
    Cartilage-hair hypoplasia (CHH) is a skeletal dysplasia with combined immunodeficiency, variable clinical course and increased risk of malignancy. Management of CHH is complicated by a paucity of long-term follow-up data, as well as knowledge on prognostic factors. We assessed clinical course and risk factors for mortality in a prospective cohort study of 80 patients with CHH recruited in 1985-1991 and followed up until 2016. For all patients we collected additional health information from health records and from the national Medical Databases and Cause-of-death Registry. The primary outcome was immunodeficiency-related death, including death from infections, lung disease and malignancy. Standardized mortality ratios (SMRs) were calculated using national mortality rates as reference. Half of the patients (57%, n = 46) manifested no symptoms of immunodeficiency during follow-up while 19% (n = 15) and 24% (n = 19) demonstrated symptoms of humoral or combined immunodeficiency, including six cases of adult-onset immunodeficiency. In a significant proportion of patients (17/79, 22%), clinical features of immunodeficiency progressed over time. Of the 15 patients with non-skin cancer, eight had no preceding clinical symptoms of immunodeficiency. Altogether 20 patients had deceased (SMR = 7.0, 95% CI = 4.3-11); most commonly from malignancy (n = 7, SMR = 10, 95% CI = 4.1-21) and lung disease (n = 4, SMR = 46, 95% CI = 9.5-130). Mortality associated with birth length below-4 standard deviation (compared to normal, SMR/SMR ratio = 5.4, 95% CI = 1.5-20), symptoms of combined immunodeficiency (compared to asymptomatic, SMR/SMR ratio= 3.9, 95% CI = 1.3-11), Hirschsprung disease (odds ratio (OR) 7.2, 95% CI = 1.04-55), pneumonia in the first year of life or recurrently in adulthood (OR = 7.6/19, 95% CI = 1.3-43/2.6-140) and autoimmunity in adulthood (OR = 39, 95% CI = 3.5-430). In conclusion, patients with CHH may develop adult-onset immunodeficiency or malignancy without preceding clinical symptoms of immune defect, warranting careful follow-up. Variable disease course and risk factors for mortality should be acknowledged.
  • Tyynismaa, Henna (2019)
    New therapies targeting metabolic vulnerabilities of specific tumor types have created wide interest in recent years. Through research now reported in the Journal by Gantner et al.,(1) metabolic precision therapy may become possible in patients with a rare eye disease, macular telangiectasia type 2, which leads to a progressive loss of central vision in both eyes in middle-aged or older persons.(2) The macula is the small area in the back of the eye that is responsible for high-resolution (i.e., sharp) vision. In the center of the macula is the fovea, which has the highest density of cone photoreceptor cells and . . .
  • Brusa, Roberta; Magri, Francesca; Papadimitriou, Dimitra; Govoni, Alessandra; Del Bo, Roberto; Ciscato, Patrizia; Savarese, Marco; Cinnante, Claudia; Walter, Maggie C.; Abicht, Angela; Bulst, Stefanie; Corti, Stefania; Moggio, Maurizio; Bresolin, Nereo; Nigro, Vincenzo; Comi, Giacomo Pietro (2018)
    Limb girdle muscular dystrophy (LGMD) type 2G is a rare form of muscle disease, described only in a few patients worldwide, caused by mutations in TCAP gene, encoding the protein telethonin. It is characterised by proximal limb muscle weakness associated with distal involvement of lower limbs, starting in the first or second decade of life. We describe the case of a 37-year-old woman of Greek origin, affected by disto-proximal lower limb weakness. No cardiac or respiratory involvement was detected. Muscle biopsy showed myopathic changes with type I fibre hypotrophy, cytoplasmic vacuoles, lipid overload, multiple central nuclei and fibre splittings; ultrastructural examination showed metabolic abnormalities. Next generation sequencing analysis detected a homozygous frameshift mutation in the TCAP gene (c.90_91del), previously described in one Turkish family. Immunostaining and Western blot analysis showed complete absence of telethonin. Interestingly, Single Nucleotide Polymorphism analysis of the 10 Mb genomic region containing the TCAP gene showed a shared homozygous haplotype of both the Greek and the Turkish patients, thus suggesting a possible founder effect of TCAP gene c.90_91del mutation in this part of the Mediterranean area. (C) 2018 Elsevier B.V. All rights reserved.
  • Su, Jing; Ekman, Carl; Oskolkov, Nikolay; Lahti, Leo; Ström, Kristoffer; Brazma, Alvis; Groop, Leif; Rung, Johan; Hansson, Ola (2015)
    Background: Although high-throughput studies of gene expression have generated large amounts of data, most of which is freely available in public archives, the use of this valuable resource is limited by computational complications and non-homogenous annotation. To address these issues, we have performed a complete re-annotation of public microarray data from human skeletal muscle biopsies and constructed a muscle expression compendium consisting of nearly 3000 samples. The created muscle compendium is a publicly available resource including all curated annotation. Using this data set, we aimed to elucidate the molecular mechanism of muscle aging and to describe how physical exercise may alleviate negative physiological effects. Results: We find 957 genes to be significantly associated with aging (p <0.05, FDR = 5 %, n = 361). Aging was associated with perturbation of many central metabolic pathways like mitochondrial function including reduced expression of genes in the ATP synthase, NADH dehydrogenase, cytochrome C reductase and oxidase complexes, as well as in glucose and pyruvate processing. Among the genes with the strongest association with aging were H3 histone, family 3B (H3F3B, p = 3.4 x 10(-13)), AHNAK nucleoprotein, desmoyokin (AHNAK, p = 6.9 x 10(-12)), and histone deacetylase 4 (HDAC4, p = 4.0 x 10(-9)). We also discover genes previously not linked to muscle aging and metabolism, such as fasciculation and elongation protein zeta 2 (FEZ2, p = 2.8 x 10(-8)). Out of the 957 genes associated with aging, 21 (p <0.001, false discovery rate = 5 %, n = 116) were also associated with maximal oxygen consumption (VO2MAX). Strikingly, 20 out of those 21 genes are regulated in opposite direction when comparing increasing age with increasing VO2MAX. Conclusions: These results support that mitochondrial dysfunction is a major age-related factor and also highlight the beneficial effects of maintaining a high physical capacity for prevention of age-related sarcopenia.
  • Rossi, Daniela; Palmio, Johanna; Evila, Anni; Galli, Lucia; Barone, Virginia; Caldwell, Tracy A.; Policke, Rachel A.; Aldkheil, Esraa; Berndsen, Christopher E.; Wright, Nathan T.; Malfatti, Edoardo; Brochier, Guy; Pierantozzi, Enrico; Jordanova, Albena; Guergueltcheva, Velina; Romero, Norma Beatriz; Hackman, Peter; Eymard, Bruno; Udd, Bjarne; Sorrentino, Vincenzo (2017)
    A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by similar to 15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.
  • Kausar, Mehran; Chew, Elaine Guo Yan; Ullah, Hazrat; Anees, Mariam; Khor, Chiea Chuen; Foo, Ia Nee; Makitie, Outi; Siddiqi, Saima (2019)
    We report on three new patients with spondyloocular syndrome (SOS) in a consanguineous Pakistani family. All three patients present progressive generalized osteoporosis, short stature, recurrent fractures, hearing loss and visual impairments. WES revealed a novel homozygous frameshift variant in exon 11 of XYLT2 (NG 012175.1, NP_071450.2) resulting in loss of evolutionary conserved amino acid sequences (840 - 865/865) at C -terminus p.R840fs*115. Sanger Sequencing confirmed the presence of the novel homozygous mutation in all three patients while the parents were heterozygous carriers of the mutation, in accordance with an autosomal recessive inheritance pattern. Only nine variants worldwide have previously been reported in XYLT2 in patients with SOS phenotype. These three patients with novel homozygous variant extend the genotypic and phenotypic spectrum of SOS.
  • Yasin, Samina; Mustafa, Saima; Ayesha, Arzoo; Latif, Muhammad; Hassan, Mubashir; Faisal, Muhammad; Mäkitie, Outi; Iqbal, Furhan; Naz, Sadaf (2020)
  • Rivas, Manuel A.; Graham, Daniel; Sulem, Patrick; Stevens, Christine; Desch, A. Nicole; Goyette, Philippe; Gudbjartsson, Daniel; Jonsdottir, Ingileif; Thorsteinsdottir, Unnur; Degenhardt, Frauke; Mucha, Soeren; Kurki, Mitja I.; Li, Dalin; D'Amato, Mauro; Annese, Vito; Vermeire, Severine; Weersma, Rinse K.; Halfvarson, Jonas; Paavola-Sakki, Anu Liisa Paulina; Lappalainen, Anne Maarit; Lek, Monkol; Cummings, Beryl; Tukiainen, Taru; Haritunians, Talin; Halme, Leena; Koskinen, Lotta L. E.; Ananthakrishnan, Ashwin N.; Luo, Yang; Heap, Graham A.; Visschedijk, Marijn C.; MacArthur, Daniel G.; Neale, Benjamin M.; Ahmad, Tariq; Anderson, Carl A.; Brant, Steven R.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Palotie, Aarno; Saavalainen, Paivi; Kontula, Kimmo; Farkkila, Martti; McGovern, Dermot P. B.; Franke, Andre; Stefansson, Kari; Rioux, John D.; Xavier, Ramnik J.; Daly, Mark J. (2016)
    Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF = up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P = 6.89 x 10(-7), odds ratio = 0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain.
  • Dillard, Kati J.; Hytönen, Marjo K.; Fischer, Daniel; Tanhuanpää, Kimmo; Lehti, Mari S.; Vainio-Siukola, Katri; Sironen, Anu; Anttila, Marjukka (2018)
    Ciliopathies presenting as inherited hepatorenal fibrocystic disorders are rare in humans and in dogs. We describe here a novel lethal ciliopathy in Norwich Terrier puppies that was diagnosed at necropsy and characterized as diffuse cystic renal disease and hepatic fibrosis. The histopathological findings were typical for cystic renal dysplasia in which the cysts were located in the straight portion of the proximal tubule, and thin descending and ascending limbs of Henle's loop. The pedigree of the affected puppies was suggestive of an autosomal recessive inheritance and therefore, whole exome sequencing and homozygosity mapping were used for identification of the causative variant. The analyses revealed a case-specific homozygous splice donor site variant in a cilia related gene, INPP5E: c.1572+5G>A. Association of the variant with the defect was validated in a large cohort of Norwich Terriers with 3 cases and 480 controls, the carrier frequency being 6%. We observed that the identified variant introduces a novel splice site in INPP5E causing a frameshift and formation of a premature stop codon. In conclusion, our results suggest that the INPP5E: c.1572+5G>A variant is causal for the ciliopathy in Norwich Terriers. Therefore, genetic testing can be carried out in the future for the eradication of the disease from the breed.
  • Purhonen, Janne; Grigorjev, Vladislav; Ekiert, Robert; Aho, Noora; Rajendran, Jayasimman; Pietras, Rafal; Truve, Katarina; Wikström, Mårten; Sharma, Vivek; Osyczka, Artur; Fellman, Vineta; Kallijärvi, Jukka (2020)
    We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1/(p.S78G) mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cyb(p.D254N)), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1/(p.S78G) tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dynamics. In Rhodobacter cytochrome bc(1) complex the equivalent substitution causes a kinetics defect with longer occupancy of RISP head domain towards the quinol oxidation site. These findings represent a unique case of spontaneous mitonuclear epistasis and highlight the role of mtDNA variation as modifier of mitochondrial disease phenotypes.
  • Carlsson, Annelie; Shepherd, Maggie; Ellard, Sian; Weedon, Michael; Lernmark, Ake; Forsander, Gun; Colclough, Kevin; Brahimi, Qefsere; Valtonen-Andre, Camilla; Ivarsson, Sten A.; Elding Larsson, Helena; Samuelsson, Ulf; Ortqvist, Eva; Groop, Leif; Ludvigsson, Johnny; Marcus, Claude; Hattersley, Andrew T. (2020)
    OBJECTIVE Identifying maturity-onset diabetes of the young (MODY) in pediatric populations close to diabetes diagnosis is difficult. Misdiagnosis and unnecessary insulin treatment are common. We aimed to identify the discriminatory clinical features at diabetes diagnosis of patients with glucokinase (GCK), hepatocyte nuclear factor-1A (HNF1A), and HNF4A MODY in the pediatric population. RESEARCH DESIGN AND METHODS Swedish patients (n = 3,933) aged 1-18 years, diagnosed with diabetes May 2005 to December 2010, were recruited from the national consecutive prospective cohort Better Diabetes Diagnosis. Clinical data, islet autoantibodies (GAD insulinoma antigen-2, zinc transporter 8, and insulin autoantibodies), HLA type, and C-peptide were collected at diagnosis. MODY was identified by sequencing GCK, HNF1A, and HNF4A, through either routine clinical or research testing. RESULTS The minimal prevalence of MODY was 1.2%. Discriminatory factors for MODY at diagnosis included four islet autoantibody negativity (100% vs. 11% not-known MODY; P = 2 x 10(-44)), HbA(1c) (7.0% vs. 10.7% [53 vs. 93 mmol/mol]; P = 1 x 10(-20)), plasma glucose (11.7 vs. 26.7 mmol/L; P = 3 x 10(-19)), parental diabetes (63% vs. 12%; P = 1 x 10(-15)), and diabetic ketoacidosis (0% vs. 15%; P = 0.001). Testing 303 autoantibody-negative patients identified 46 patients with MODY (detection rate 15%). Limiting testing to the 73 islet autoantibody-negative patients with HbA(1c)
  • Becker, Isabelle C.; Scheller, Inga; Wackerbarth, Lou M.; Beck, Sarah; Heib, Tobias; Aurbach, Katja; Manukjan, Georgi; Gross, Carina; Spindler, Markus; Nagy, Zoltan; Witke, Walter; Lappalainen, Pekka; Bender, Markus; Schulze, Harald; Pleines, Irina; Nieswandt, Bernhard (2020)
    Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.
  • PanScan PanC4 consortia; Walsh, Naomi; Zhang, Han; Männistö, Satu; Weiderpass, Elisabete (2019)
    Background Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P Conclusion Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.
  • Harjuhaahto, Sandra; Rasila, Tiina S.; Molchanova, Svetlana M.; Woldegebriel, Rosa; Kvist, Jouni; Konovalova, Svetlana; Sainio, Markus T.; Pennonen, Jana; Torregrosa-Munumer, Ruben; Ibrahim, Hazem; Otonkoski, Timo; Taira, Tomi; Ylikallio, Emil; Tyynismaa, Henna (2020)
    Mitochondrial intermembrane space proteins CHCHD2 and CHCHD10 have roles in motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and axonal neuropathy and in Parkinson's disease. They form a complex of unknown function. Here we address the importance of these two proteins in human motor neurons. We show that gene edited human induced pluripotent stem cells (iPSC) lacking either CHCHD2 or CHCHD10 are viable and can be differentiated into functional motor neurons that fire spontaneous and evoked action potentials. Mitochondria in knockout iPSC and motor neurons sustain ultrastructure but show increased proton leakage and respiration, and reciprocal compensatory increases in CHCHD2 or CHCHD10. Knockout motor neurons have largely overlapping transcriptome profiles compared to isogenic control line, in particular for synaptic gene expression. Our results show that the absence of either CHCHD2 or CHCHD10 alters mitochondrial respiration in human motor neurons, inducing similar compensatory responses. Thus, pathogenic mechanisms may involve loss of synaptic function resulting from defective energy metabolism.
  • Plunkett, Jevon; Doniger, Scott; Orabona, Guilherme; Morgan, Thomas; Haataja, Ritva; Hallman, Mikko; Puttonen, Hilkka; Menon, Ramkumar; Kuczynski, Edward; Norwitz, Errol; Snegovskikh, Victoria; Palotie, Aarno; Palotie, Leena; Fellman, Vineta; DeFranco, Emily A.; Chaudhari, Bimal P.; McGregor, Tracy L.; McElroy, Jude J.; Oetjens, Matthew T.; Teramo, Kari; Borecki, Ingrid; Fay, Justin; Muglia, Louis (2011)
  • Ravela, Suvi; Valmu, Leena; Domanskyy, Mykola; Koistinen, Hannu; Kylänpää, Leena; Lindström, Outi; Stenman, Jakob; Hämäläinen, Esa; Stenman, Ulf-Håkan; Itkonen, Outi (2018)
    Pancreatic secretory trypsin inhibitor Kazal type 1 (SPINK1) is a 6420 Da peptide produced by the pancreas, but also by several other tissues and many tumors. Some mutations of the SPINK1 gene, like the one causing amino acid change N34S, have been shown to confer susceptibility to recurrent or chronic pancreatitis. Detection of such variants are therefore of clinical utility. So far SPINK1 variants have been determined by DNA techniques. We have developed and validated an immunocapture-liquid chromatography-mass spectrometric (IC-LC-MS) assay for the detection and quantification of serum SPINK1, N34S-SPINK1, and P55S-SPINK1. We compared this method with a time-resolved immunofluorometric assay (TR-IFMA) for serum samples and primer extension analysis of DNA samples. We used serum and DNA samples from patients with acute pancreatitis, renal cell carcinoma, or benign urological conditions. With the help of a zygosity score calculated from the respective peak areas using the formula wild-type (wt) SPINK1/(variant SPINK1 + wt SPINK1), we were able to correctly characterize the heterozygotes and homozygotes from the samples with DNA information. The score was then used to characterize the apparent zygosity of the samples with no DNA characterization. The IC-LC-MS method for SPINK1 was linear over the concentration range 0.5-1000 mu g/L. The limit of quantitation (LOQ) was 0.5 mu g/L. The IC-LC-MS and the TR-IFMA assays showed good correlation. The median zygosity score was 1.00 (95% CI 0.98-1.01, n = 11), 0.55 (95% CI 0.43-0.61, n = 14), and 0.05 (range 0.04-0.07, n = 3) for individuals found to be wt, heterozygous, and homozygous, respectively, for the N34S-SPINK1 variant by DNA analysis. When DNA samples are not available, this assay facilitates identification of the N34S- and P55S-SPINK1 variants also in archival serum samples.