Browsing by Subject "MYODES-GLAREOLUS"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Schneider, Julia; Hoffmann, Bernd; Fevola, Cristina; Schmidt, Marie Luisa; Imholt, Christian; Fischer, Stefan; Ecke, Frauke; Hoernfeldt, Birger; Magnusson, Magnus; Olsson, Gert E.; Rizzoli, Annapaola; Tagliapietra, Valentina; Chiari, Mario; Reusken, Chantal; Buzan, Elena; Kazimirova, Maria; Stanko, Michal; White, Thomas A.; Reil, Daniela; Obiegala, Anna; Meredith, Anna; Drexler, Jan Felix; Essbauer, Sandra; Henttonen, Heikki; Jacob, Jens; Hauffe, Heidi C.; Beer, Martin; Heckel, Gerald; Ulrich, Rainer G. (2021)
    The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (Myodes glareolus, syn. Clethrionomys glareolus). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans. The aim of the present research was to investigate the geographical distribution of bank vole-associated hepaciviruses (BvHVs) and their genetic diversity in Europe. Real-time reverse transcription polymerase chain reaction (RT-qPCR) screening revealed BvHV RNA in 442 out of 1838 (24.0%) bank voles from nine European countries and in one of seven northern red-backed voles (Myodes rutilus, syn. Clethrionomys rutilus). BvHV RNA was not found in any other small mammal species (n = 23) tested here. Phylogenetic and isolation-by-distance analyses confirmed the occurrence of both BvHV species (Hepacivirus F and Hepacivirus J) and their sympatric occurrence at several trapping sites in two countries. The broad geographical distribution of BvHVs across Europe was associated with their presence in bank voles of different evolutionary lineages. The extensive geographical distribution and high levels of genetic diversity of BvHVs, as well as the high population fluctuations of bank voles and occasional commensalism in some parts of Europe warrant future studies on the zoonotic potential of BvHVs.
  • Vaheri, Antti; Henttonen, Heikki; Mustonen, Jukka (2021)
    Finland has the highest incidence of hantavirus infections globally, with a significant impact on public health. The large coverage of boreal forests and the cyclic dynamics of the dominant forest rodent species, the bank vole Myodes glareolus, explain most of this. We review the relationships between Puumala hantavirus (PUUV), its host rodent, and the hantavirus disease, nephropathia epidemica (NE), in Finland. We describe the history of NE and its diagnostic research in Finland, the seasonal and multiannual cyclic dynamics of PUUV in bank voles impacting human epidemiology, and we compare our northern epidemiological patterns with those in temperate Europe. The long survival of PUUV outside the host and the life-long shedding of PUUV by the bank voles are highlighted. In humans, the infection has unique features in pathobiology but rarely long-term consequences. NE is affected by specific host genetics and risk behavior (smoking), and certain biomarkers can predict the outcome. Unlike many other hantaviruses, PUUV causes a relatively mild disease and is rarely fatal. Reinfections do not exist. Antiviral therapy is complicated by the fact that when symptoms appear, the patient already has a generalized infection. Blocking vascular leakage measures counteracting pathobiology, offer a real therapeutic approach.
  • Charbonnel, Nathalie; Pages, Marie; Sironen, Tarja; Henttonen, Heikki; Vapalahti, Olli; Mustonen, Jukka; Vaheri, Antti (2014)
  • Castel, Guillaume; Chevenet, Francois; Razzauti, Maria; Murri, Severine; Marianneau, Philippe; Cosson, Jean-Francois; Tordo, Noel; Plyusnin, Alexander (2019)
    Puumala virus is an RNA virus hosted by the bank vole (Myodes glareolus) and is today present in most European countries. Whilst it is generally accepted that hantaviruses have been tightly co-evolving with their hosts, Puumala virus (PUUV) evolutionary history is still controversial and so far has not been studied at the whole European level. This study attempts to reconstruct the phylogeographical spread of modern PUUV throughout Europe during the last postglacial period in the light of an upgraded dataset of complete PUUV small (S) segment sequences and by using most recent computational approaches. Taking advantage of the knowledge on the past migrations of its host, we identified at least three potential independent dispersal routes of PUUV during postglacial recolonization of Europe by the bank vole. From the Alpe-Adrian region (Balkan, Austria, and Hungary) to Western European countries (Germany, France, Belgium, and Netherland), and South Scandinavia. From the vicinity of Carpathian Mountains to the Baltic countries and to Poland, Russia, and Finland. The dissemination towards Denmark and North Scandinavia is more hypothetical and probably involved several independent streams from south and north Fennoscandia.
  • Voutilainen, Liina; Kallio, Eva R.; Niemimaa, Jukka; Vapalahti, Olli; Henttonen, Heikki (2016)
    Understanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite for predicting and preventing human disease epidemics. The human infection risk of Puumala hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations exhibiting a 3-year density cycle. Infected bank voles were most abundant in mid-winter months during years of increasing or peak host density. Prevalence of PUUV infection in bank voles exhibited a regular, seasonal pattern reflecting the annual population turnover and accumulation of infections within each year cohort. In autumn, the PUUV transmission rate tracked increasing host abundance, suggesting a density-dependent transmission. However, prevalence of PUUV infection was similar during the increase and peak years of the density cycle despite a twofold difference in host density. This may result from the high proportion of individuals carrying maternal antibodies constraining transmission during the cycle peak years. Our exceptionally intensive and long-term dataset provides a solid basis on which to develop models to predict the dynamic public health threat posed by PUUV in northern Europe.
  • Grzybek, Maciej; Tolkacz, Katarzyna; Sironen, Tarja; Mäki, Sanna; Alsarraf, Mohammed; Behnke-Borowczyk, Jolanta; Biernat, Beata; Nowicka, Joanna; Vaheri, Antti; Henttonen, Heikki; Behnke, Jerzy M.; Bajer, Anna (2020)
    Simple Summary Wild rodents constitute a significant threat to public health. We tested 77 voles from northeastern Poland for the presence of antibodies to hantaviruses, arenaviruses and cowpox viruses. We report 18.2% overall seroprevalence of zoonotic viruses. Our results contribute to knowledge about the role of Polish voles as possible reservoirs of viral infections. Rodents are known to be reservoir hosts for a plethora of zoonotic viruses and therefore play a significant role in the dissemination of these pathogens. We trapped three vole species (Microtus arvalis, Alexandromys oeconomus and Microtus agrestis) in northeastern Poland, all of which are widely distributed species in Europe. Using immunofluorescence assays, we assessed serum samples for the presence of antibodies to hantaviruses, arenaviruses and cowpox viruses (CPXV). We detected antibodies against CPXV and Puumala hantavirus (PUUV), the overall seroprevalence of combined viral infections being 18.2% [10.5-29.3] and mostly attributed to CPXV. We detected only one PUUV/TULV cross-reaction in Microtus arvalis (1.3% [0.1-7.9]), but found similar levels of antibodies against CPXV in all three vole species. There were no significant differences in seroprevalence of CPXV among host species and age categories, nor between the sexes. These results contribute to our understanding of the distribution and abundance of CPXV in voles in Europe, and confirm that CPXV circulates also in Microtus and Alexandromys voles in northeastern Poland.