Browsing by Subject "MYOSTATIN"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Vaughan, Danielle; Mitchell, Robert; Kretz, Oliver; Chambers, David; Lalowski, Maciej; Amthor, Helge; Ritvos, Olli; Pasternack, Arja; Matsakas, Antonios; Vaiyapuri, Sakthivel; Huber, Tobias B.; Denecke, Bernd; Mukherjee, Abir; Widera, Darius; Patel, Ketan (2021)
    Activin/myostatin signalling acts to induce skeletal muscle atrophy in adult mammals by inhibiting protein synthesis as well as promoting protein and organelle turnover. Numerous strategies have been successfully developed to attenuate the signalling properties of these molecules, which result in augmenting muscle growth. However, these molecules, in particular activin, play major roles in tissue homeostasis in numerous organs of the mammalian body. We have recently shown that although the attenuation of activin/myostatin results in robust muscle growth, it also has a detrimental impact on the testis. Here, we aimed to discover the long-term consequences of a brief period of exposure to muscle growth-promoting molecules in the testis. We demonstrate that muscle hypertrophy promoted by a soluble activin type IIB ligand trap (sActRIIB) is a short-lived phenomenon. In stark contrast, short-term treatment with sActRIIB results in immediate impact on the testis, which persists after the sessions of the intervention. Gene array analysis identified an expansion in aberrant gene expression over time in the testis, initiated by a brief exposure to muscle growth-promoting molecules. The impact on the testis results in decreased organ size as well as quantitative and qualitative impact on sperm. Finally, we have used a drug-repurposing strategy to exploit the gene expression data to identify a compound - N-6-methyladenosine - that may protect the testis from the impact of the muscle growth-promoting regime. This work indicates the potential long-term harmful effects of strategies aimed at promoting muscle growth by attenuating activin/myostatin signalling. Furthermore, we have identified a molecule that could, in the future, be used to overcome the detrimental impact of sActRIIB treatment on the testis.
  • Paajanen, Juuso; Ilonen, Ilkka; Lauri, Helena; Järvinen, Tommi; Sutinen, Eva; Ollila, Hely; Rouvinen, Eeva; Lemström, Karl; Räsänen, Jari; Ritvos, Olli; Koli, Katri; Myllärniemi, Marjukka (2020)
    Activin A has previously been associated with cancer cachexia and in vitro resistance to platinum-based chemotherapy. We studied circulating activin A concentrations as well as activin B and their antagonists' follistatin/follistatin-like 3 in presurgical patients with non-small-cell lung cancer and malignant pleural mesothelioma. We found that circulating activing A levels were elevated in malignant pleural mesothelioma and associated with cancer cachexia and poor response to platinum-based chemotherapy. Circulating activing A separated non-small-cell lung cancer from benign lung lesion. Background: Previous preclinical studies have shown that activin A is overexpressed in malignant pleural mesothelioma (MPM), associates with cancer cachexia, and is observed in in vitro resistance to platinum-based chemotherapy. We evaluated circulating activin levels and their endogenous antagonists' follistatin/follistatin-like 3 in intrathoracic tumors. Materials and Methods: Patients suspected of thoracic malignancy were recruited prior to surgery. Serum samples were collected from 21 patients with MPM, 59 patients with non-small-cell lung cancer (NSCLC), and 22 patients with benign lung lesions. Circulating activin/follistatin levels were measured using enzymelinked immunosorbent assay and compared with clinicopathologic parameters. Results: Circulating activin A levels were elevated in patients with MPM when compared with patients with NSCLC or benign lung lesion samples (P <.0001). Also, follistatin and follistatin-like 3 levels were the highest in MPM, although with less difference compared with activin A. Receiver operating characteristic analysis for activin A for separating NSCLC from benign lung lesion showed an area under the curve of 0.856 (95% confidence interval, 0.77-0.94). Activin A levels were higher in patients with cachexia (P <.001). In patients with MPM, activin A levels correlated positively with computed tomographybased baseline tumor size (R = 0.549; P = .010) and the change in tumor size after chemotherapy (R = 0.743; P = .0006). Patients with partial response or stable disease had lower circulating activin A levels than the ones with progressive disease (P = .028). Conclusion: Activin A serum level could be used as a biomarker in differentiating malignant and benign lung tumors. Circulating activin A levels were elevated in MPM and associates with cancer cachexia and reduced chemotherapy response. (C) 2019 The Author(s). Published by Elsevier Inc.
  • Wu, Chuanyan; Borne, Yan; Gao, Rui; Rodriguez, Maykel Lopez; Roell, William C.; Wilson, Jonathan M.; Regmi, Ajit; Luan, Cheng; Aly, Dina Mansour; Peter, Andreas; Machann, Juergen; Staiger, Harald; Fritsche, Andreas; Birkenfeld, Andreas L.; Tao, Rongya; Wagner, Robert; Canouil, Mickael; Hong, Mun-Gwan; Schwenk, Jochen M.; Ahlqvist, Emma; Kaikkonen, Minna U.; Nilsson, Peter; Shore, Angela C.; Khan, Faisel; Natali, Andrea; Melander, Olle; Orho-Melander, Marju; Nilsson, Jan; Haering, Hans-Ulrich; Renstrom, Erik; Wollheim, Claes B.; Engstrom, Gunnar; Weng, Jianping; Pearson, Ewan R.; Franks, Paul W.; White, Morris F.; Duffin, Kevin L.; Vaag, Allan Arthur; Laakso, Markku; Stefan, Norbert; Groop, Leif; De Marinis, Yang (2021)
    The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04-1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09-1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.
  • Solagna, Francesca; Tezze, C.; Lindenmeyer, M.T.; Lu, S.; Wu, G.; Liu, S.; Zhao, Y.; Mitchell, R.; Meyer, C.; Omairi, S.; Kilic, T.; Paolini, A.; Ritvos, O.; Pasternack, A.; Matsakas, A.; Kylies, D.; zur Wiesch, J.S.; Turner, J.-E.; Wanner, N.; Nair, V.; Eichinger, F.; Menon, R.; Martin, I.V.; Klinkhammer, B.M.; Hoxha, E.; Cohen, C.D.; Tharaux, P.-L.; Boor, P.; Ostendorf, T.; Kretzler, M.; Sandri, M.; Kretz, O.; Puelles, V.G.; Patel, K.; Huber, T.B. (2021)
    Skeletal muscle wasting is commonly associated with chronic kidney disease (CKD), resulting in increased morbidity and mortality. However, the link between kidney and muscle function remains poorly understood. Here, we took a complementary interorgan approach to investigate skeletal muscle wasting in CKD. We identified increased production and elevated blood levels of soluble pro-cachectic factors, including activin A, directly linking experimental and human CKD to skeletal muscle wasting programs. Single-cell sequencing data identified the expression of activin A in specific kidney cell populations of fibroblasts and cells of the juxtaglomerular apparatus. We propose that persistent and increased kidney production of procachectic factors, combined with a lack of kidney clearance, facilitates a vicious kidney/muscle signaling cycle, leading to exacerbated blood accumulation and, thereby, skeletal muscle wasting. Systemic pharmacological blockade of activin A using soluble activin receptor type IIB ligand trap as well as muscle-specific adeno-associated virus-mediated downregulation of its receptor ACVR2A/B prevented muscle wasting in different mouse models of experimental CKD, suggesting that activin A is a key factor in CKD-induced cachexia. In summary, we uncovered a crosstalk between kidney and muscle and propose modulation of activin signaling as a potential therapeutic strategy for skeletal muscle wasting in CKD.
  • Puolakkainen, Tero; Rummukainen, Petri; Lehto, Jemina; Ritvos, Olli; Hiltunen, Ari; Saamanen, Anna-Marja; Kiviranta, Riku (2017)
    Fractures still present a significant burden to patients due to pain and periods of unproductivity. Numerous growth factors have been identified to regulate bone remodeling. However, to date, only the bone morphogenetic proteins (BMPs) are used to enhance fracture healing in clinical settings. Activins are pleiotropic growth factors belonging to the TGF-beta superfamily. We and others have recently shown that treatment with recombinant fusion proteins of activin receptors greatly increases bone mass in different animal models by trapping activins and other ligands thus inhibiting their signaling pathways. However, their effects on fracture healing are less known. Twelve-week old male C57Bl mice were subjected to a standardized, closed tibial fracture model. Animals were divided into control and treatment groups and were administered either PBS control or a soluble activin type IIB receptor (ActRIIB-Fc) intraperitoneally once a week for a duration of two or four weeks. There were no significant differences between the groups at two weeks but we observed a significant increase in callus mineralization in ActRIIB-Fc-treated animals by microcomputed tomography imaging at four weeks. Bone volume per tissue volume was 60%, trabecular number 55% and bone mineral density 60% higher in the 4-week calluses of the ActRIIB-Fc-treated mice (p<0.05 in all). Biomechanical strength of 4-week calluses was also significantly improved by ActRIIBFc treatment as stiffness increased by 64% and maximum force by 45% (p<0.05) compared to the PBS-injected controls. These results demonstrate that ActRIIB-Fc treatment significantly improves healing of closed long bone fractures. Our findings support the previous reports of activin receptors increasing bone mass but also demonstrate a novel approach for using ActRIIB-Fc to enhance fracture healing.
  • Nissinen, T. A.; Degerman, J.; Räsänen, M.; Poikonen, A. R.; Koskinen, S.; Mervaala, E.; Pasternack, A.; Ritvos, O.; Kivela, R.; Hulmi, J. J. (2016)
    Doxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin induced muscle atrophy without markedly increasing typical atrogenes or protein degradation pathways. Instead, doxorubicin decreased muscle protein synthesis which was completely restored by sACVR2B-Fc. Doxorubicin administration also resulted in impaired running performance without effects on skeletal muscle mitochondrial capacity/function or capillary density. Running performance and mitochondrial function were unaltered by sACVR2B-Fc administration. Tumour experiment using Lewis lung carcinoma cells demonstrated that sACVR2B-Fc decreased the cachectic effects of chemotherapy without affecting tumour growth. These results demonstrate that blocking ACVR2B signalling may be a promising strategy to counteract chemotherapy-induced muscle wasting without damage to skeletal muscle oxidative capacity or cancer treatment.
  • Puolakkainen, Tero; Ma, Hongqian; Kainulainen, Heikki; Pasternack, Arja; Rantalainen, Timo; Ritvos, Olli; Heikinheimo, Kristiina; Hulmi, Juha; Kiviranta, Riku (2017)
    Background: Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Methods: Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Results: Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral mu CT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P <0.05) in both ActRIIB-Fc treated groups. Running also resulted in increased bone volume and trabecular number in PBS-treatedmice. However, there was no significant difference in trabecular bone structure or volumetric bone mineral density between the ActRIIB-Fc and ActRIIB-Fc-R indicating that running did not further improve bone structure in ActRIIB-Fc-treated mice. ActRIIB-Fc increased bone mass also in vertebrae (BV/TV +20%, Tb.N +30%, P <0.05) but the effects were more modest. The number of osteoclasts was decreased in histological analysis and the expression of several osteoblast marker genes was increased in ActRIIB-Fc treated mice suggesting decreased bone resorption and increased bone formation in these mice. Increased bone mass in femurs translated into enhanced bone strength in biomechanical testing as the maximum force and stiffness were significantly elevated in ActRIIB-Fc-treated mice. Conclusions: Our results indicate that treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.