Browsing by Subject "Magisterprogrammet i botanik"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Zhou, Quan (Helsingin yliopisto, 2020)
    Leaf senescence is a developmental and physiological phase in plants to end leaf development. Environment factors such as drought stress, extreme temperature, and pathogen threat and internal factors including age and reactive oxygen species induce leaf senescence. Some phytohormones such as jasmonic acid and salicylic acid play a key function in cell death in plants. WRKY transcription factors is known as one of the largest transcription factor family in plants which regulates a variety of plants processes. WRKY75 which belong to WRKY transcription factors has shown multiple functions in plant development like regulation of Pi starvation responses and root development and flowering. In my thesis, I focused on the role of WRKY75 in senescence and stress responses. WRKY75 was identified as a positive regulator of cell death in Arabidopsis. WRKY75 can promote salicylic acid biosynthesis by promote transcript levels of SID2 and also cause hydrogen peroxide accumulation by suppressing the transcription of CAT2. Hydrogen peroxide and salicylic acid can promote WRKY75 transcription at the same time. To evaluate the function of WRKY75 transcription factor in SA signalling and cell death, three lesion mimic mutants acd5, cat2, dnd1 and their corresponding wrky75 double mutant were used. Interestingly, no different phenotypes were found between acd5, cat2, dnd1 and their corresponding wrky75 double mutants in cell death and hydrogen peroxide accumulation detection in Arabidopsis leaves. Meanwhile, marker genes transcription levels were not different in both short day and long day growth condition. However, different phenotypes were observed in botrytis infection. Based on these results, we formed a hypothesis that gene redundancy could influence genetic characterization of WRKY75. To overcome this problem, SRDX-WRKY75 chimeric repressor transgenic lines were generated. The SRDX domain act as a dominant negative regulator to suppress WRKY75 target genes. In future research, these new lines can be used to test transcript levels for putative WRKY75 target genes.
  • Amin, Al (Helsingin yliopisto, 2021)
    Wood development is a significant process with both financial as well as natural perspectives. Trees and wood are of highly significance in Finland where a huge part of the gross national income devises from the forestry area. Ecologically and commercially the Norway spruce (Picea abies) is one of the most common tree species in Europe. It covers about 30% of Finland's forest area. Norway spruce is frequently used in research to study many phenomena related specifically to the wood formation and lignification. The principal objective of my thesis work was to reveal an unknown step in the lignification process in developing xylem of Norway spruce, i.e. the initiation site(s) for lignification. To achieve this goal, the aim was to investigate the chemical identity of possible lignification initiation sites in the middle lamellae and cell corners of developing Norway spruce xylem, and to answer the question where in the cell wall soluble monolignols first emerge and lead to the start of lignin formation (polymerization). I was approaching this goal with immunolabeling technique for confocal microscopy and Raman spectroscopy to unravel this initiation site of lignification by using specific monoclonal antibodies for cell wall compounds and comparing the results with the initial lignin deposition sites. To detect the location/distribution of some important polysaccharides and lignin substructure for lignification initiation, monoclonal antibodies i.e. LM10, LM11, LM15, LM24 and antibody Dibenzodioxocin or DBD were applied for confocal microscopy and some monolignol specific spectra were applied for Raman microscopy. The xylan was detected by LM10 in secondary cell wall abundantly and few are in primary cell wall of Norway spruce. The LM11 against arabinoxylan was determined more in primary cell walls but less in secondary cell wall. The location of xyloglucan was identified in the middle lamellae, primary and secondary cell wall of Norway spruce by LM15. The LM24 against glycosylated xyloglucan was found in secondary cell walls, abundantly in cell corners but few in primary cell wall. The primary antibody Dibenzodioxocin or DBD for the lignin substructure revealed that these were present in the mature cells of secondary cell walls (S2 and S3 layers). The lignin substructures DBD were not found in youngest cells where secondary cell walls are absent. The developing xylem of Norway spruce was subjected Raman microscopy and which revealed the locations of cinnamyl alcohol, coniferyl alcohol and coniferyl aldehyde. The cinnamyl alcohol was abundantly found at cell corner and middle lamellae in most developing part of xylem. The coniferyl alcohol was determined only in developing xylem cell corners. The coniferyl aldehyde was observed at cell corners, middle lamella and primary cell walls of developing xylem. The coniferyl aldehyde was located more in mature cells than younger cells. So, the Confocal and Raman microscopy images revealed the possible bindings of monolignols to polysaccharide in young cell corners, cell wall layers and middle lamellae.
  • Peltola, Aino (Helsingin yliopisto, 2021)
    Kurtturuusu (Rosa rugosa) on haitallinen vieraslaji Suomessa. Se on levinnyt alkuperäisiltä esiintymisalueiltaan Koillis-Aasiasta Itämeren ja Pohjanmeren rannikolle sekä Pohjois-Amerikan koillisosiin. Se uhkaa luonnon monimuotoisuutta erityisesti merenrannoilla. Suomessa kaikki hiekkarantojen ja dyynien luontotyypit ovat uhanalaisia ja kurtturuusu vaikuttaa erityisesti niiden ekosysteemeihin muodostamalla suuria tiheitä kasvustoja. Kurtturuusukasvustossa muut lajit vähenevät. Vieraslajilain nojalla kurtturuusun kasvattaminen on kielletty, mutta kasvatuskielto astuu voimaan vasta siirtymäajan jälkeen 1.6.2022. Kurtturuusu on suosittu koristepensas. Siitä on myös jalostettu uusia lajikkeita. Niiden kasvatusta kielto ei koske, koska niiden lisääntymiskyvyn on ajateltu olevan heikko. Tutkimuksen tavoitteena oli selvittää kurtturuusun levinneisyyttä Espoon rannoilla sekä tutkia sen lisääntymiskykyä. Tutkimuksessa kartoitettiin Espoon merenrantoja järjestelmällisesti maastossa havainnoiden ja etsittiin niiltä kurtturuusua. Kasvustojen ominaisuuksia tutkittiin ja selvitettiin morfologisten tuntomerkkien avulla, ovatko ne kurtturuusun perusmuotoa vai jotakin jalostettua lajiketta. Kasvustoista valittiin osa tarkempaa siementutkimusta varten. Siementen elinkykyä tutkittiin tetrazoliumtestin avulla ja kelluntakykyä vesiastioissa. Siementutkimuksessa selvitettiin, eroaako kurtturuusun perusmuodon ja jalostettujen lajikkeiden siementuotto tai siementen elinkyky toisistaan ja kuinka hyvin pähkylät kelluvat. Tilastollisina menetelminä käytettiin varianssianalyysiä ja t-testiä. Kurtturuusua kasvoi Espoon rannoilla runsaasti monenlaisilla kasvupaikoilla sekä istutettuna että villiytyneenä. Mantereella sitä oli enemmän kuin saaristossa. Villiytyneenä tai mahdollisesti villiytyneenä kasvoi vain muutamia kasvustoja jalostettuja kurtturuusulajikkeita. Istutettuina niitä oli enemmän. Kurtturuusun siementuotto vaikuttaa olevan suurempi perusmuodolla kuin jalostetuilla lajikkeilla. Perusmuoto tuotti myös keskimäärin enemmän elinkykyisiä siemeniä. Hajonta molemmissa ryhmissä oli kuitenkin suurta. Osa jalostetuista lajikkeita tuotti melko runsaastikin elinkykyisiä siemeniä, toiset taas hyvin vähän. Kurtturuusun pähkylät kelluivat hyvin. Tulokset tukevat käsitystä siitä, että jalostetut kurtturuusulajikkeet eivät olisi yhtä haitallisia kuin perusmuoto. Sekä perusmuodon että jalostettujen lajikkeiden siementuoton ja elinkyvyn hajonta oli kuitenkin suurta. Eri lajikkeiden eroja olisikin tarpeen selvittää järjestelmällisesti. Kurtturuusulla on hyvät edellytykset levitä veden välityksellä uusille kasvupaikoille, koska se kasvaa rannoilla ja sen siementen kelluntakyky on hyvä. Kurtturuusun kartoitus Espoossa auttaa sen torjunnan suunnittelussa myös muissa kaupungeissa.
  • Vilhonen, Enni (Helsingin yliopisto, 2021)
    Improving land management to mitigate climate change is important, especially in agriculture on soils with high organic content. Many studies have found evidence that increasing diversity can help to improve plant biomass production and soil carbon storage. This is attributed to complementarity which consists of more efficient resource use due to niche differences and facilitative interactions. For the total climate impact, the effect of greenhouse gas emissions from the soil needs to be considered. To find out if adding more species to a grass mixture could have similar benefits in boreal zone grass cultivation in Finland, an experiment was set up with four different species mixtures, and three levels of species richness were established under a nurse crop. It was additionally of interest if these effects can counter the emissions of cultivation on organic soils. Biomass samples were collected both before the nurse crop was removed and at the end of the growing season. Both species richness and Shannon diversity index were considered as explanatory factors. Carbon exchange, divided into respiration and photosynthetic capacity, as well as nitrous oxide and methane fluxes, were monitored monthly. There was no strong evidence that species richness affects biomass or greenhouse gas fluxes during the first year. The effect of species richness on the biomass was clearer when the diversity index was considered. These results were significant when the lowest biomass values were excluded from the analysis, probably because complementary resource use needs enough biomass to have an effect. The differences in carbon flux measurements may be sensitive to timing within the growing season since the results closest to significant were obtained at the start of the season. At the time, the measurement conditions were good and the nurse crop biomass was small enough not to obscure the effects of grass mixture. When it comes to other greenhouse gases, species richness had most impact on early nitrous oxide emissions, while methane flux probably needs significantly more time for any changes to appear. Overall, the effect of species richness needs to be studied over the full grass cultivation cycle to find out the full effect. Based on current results, increasing species richness may be an option when other methods cannot be used to reduce emissions and improve carbon sink of agriculture.
  • Burg, Skylar (Helsingin yliopisto, 2021)
    In this study, a greenhouse experiment was used to assess if temperature sensitivity, specifically, thermoregulatory plasticity, has a functional role in floral reflectance and pigmentation in a population of P. lanceolata grown in three different temperature treatments, reflecting past, present, and future summer temperatures. Spectrophotometry, surface temperature readings, and near-infrared (NIR) region image analysis were used to identify how the spectral absorbance properties and biochemical makeup of P. lanceolata flowers differed between treatments. Reflectance and phenolic absorbance were both found to be influenced by ambient temperature. However, surface temperature of flower spikes was not affected by growing temperature, reflectance, or phenolic absorbance. The results suggest that Plantago lanceolata may utilize thermoregulatory plasticity in reflectance and phenolic absorbance to adjust to rising temperatures. These findings have important implications in species reactions to climate change and denotes that increased selection on thermal function traits may occur under a future climate scenario of continued warming in temperate and boreal biomes.