Browsing by Subject "Magnetic resonance imaging (MRI)"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Munukka, M.; Waller, B.; Rantalainen, T.; Hakkinen, A.; Nieminen, M. T.; Lammentausta, E.; Kujala, U. M.; Paloneva, J.; Sipila, S.; Peuna, A.; Kautiainen, H.; Selanne, H.; Kiviranta, I.; Heinonen, A. (2016)
    Objective: To study the efficacy of aquatic resistance training on biochemical composition of tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis (OA). Design: Eighty seven volunteer postmenopausal women, aged 60-68 years, with mild knee OA (Kellgren-Lawrence grades I/II and knee pain) were recruited and randomly assigned to an intervention (n = 43) and control (n = 44) group. The intervention group participated in 48 supervised aquatic resistance training sessions over 16 weeks while the control group maintained usual level of physical activity. The biochemical composition of the medial and lateral tibiofemoral cartilage was estimated using single-slice transverse relaxation time (T2) mapping and delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC index). Secondary outcomes were cardiorespiratory fitness, isometric knee extension and flexion force and knee injury and OA outcome (KOOS) questionnaire. Results: After 4-months aquatic training, there was a significant decrease in both T2 -1.2 ms (95% confidence interval (CI): -2.3 to -0.1, P = 0.021) and dGEMRIC index -23 ms (-43 to -3, P = 0.016) in the training group compared to controls in the full thickness posterior region of interest (ROI) of the medial femoral cartilage. Cardiorespiratory fitness significantly improved in the intervention group by 9.8% (P = 0.010). Conclusions: Our results suggest that, in postmenopausal women with mild knee OA, the integrity of the collagen-interstitial water environment (T2) of the tibiofemoral cartilage may be responsive to low shear and compressive forces during aquatic resistance training. More research is required to understand the exact nature of acute responses in dGEMRIC index to this type of loading. Further, aquatic resistance training improves cardiorespiratory fitness. (C) 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
  • Nevalainen, Päivi; Metsäranta, Marjo; Toiviainen-Salo, Sanna; Marchi, Viviana; Mikkonen, Kirsi; Vanhatalo, Sampsa; Lauronen, Leena (2020)
    Purpose: To evaluate the accuracy of hypoxic ischemic encephalopathy (HIE) grade, and neonatal neurophysiological and neuroimaging measures for predicting development of infantile spasms syndrome (IS) or other postneonatal, infantile onset epilepsy after perinatal HIE. Methods: We examined a population-based cohort of 92 consequent infants with moderate-to-severe HIE. The HIE grade and neonatal neuroimaging (MRI) and neurophysiology (EEG and somatosensory evoked potentials, SEPs) findings were compared to the development of IS or other epilepsy within the first year of life. Results: Out of 74 surviving infants with follow-up information, five developed IS and one developed a focal onset epilepsy. They all had recovered from severe HIE. All survivors with inactive neonatal EEG (recorded within the first few postnatal days, n = 4) or the most severe type of brain injury in MRI (n = 3) developed epilepsy (positive predictive value, PPV 100 %). Bilaterally absent SEPs had 100 % sensitivity and 75 % PPV for epilepsy. A combination of absent SEPs and a poor MRI finding (combined deep and cortical gray matter injury) resulted in higher PPV (86 %) without lowering sensitivity (100 %). Follow-up EEGs showed recurrent epileptiform activity already between 1- and 2-months age in those that developed epilepsy, distinguishing them from those surviving without epilepsy. Conclusions: Poor neonatal neuroimaging and neurophysiological findings provide accurate prediction for development of infantile onset epilepsy after HIE. Of the neonates with severe HIE, the ones with severe neonatal MRI and neurophysiological abnormalities need frequent follow-up, including repeated EEGs, for early detection of IS.
  • Husso, Minna; Nissi, Mikko J; Kuivanen, Antti; Halonen, Paavo; Tarkia, Miikka; Teuho, Jarmo; Saunavaara, Virva; Vainio, Pauli; Sipola, Petri; Manninen, Hannu; Ylä-Herttuala, Seppo; Knuuti, Juhani; Töyräs, Juha (BioMed Central, 2019)
    Abstract Background The reliable quantification of myocardial blood flow (MBF) with MRI, necessitates the correction of errors in arterial input function (AIF) caused by the T1 saturation effect. The aim of this study was to compare MBF determined by a traditional dual bolus method against a modified dual bolus approach and to evaluate both methods against PET in a porcine model of myocardial ischemia. Methods Local myocardial ischemia was induced in five pigs, which were subsequently examined with contrast enhanced MRI (gadoteric acid) and PET (O-15 water). In the determination of MBF, the initial high concentration AIF was corrected using the ratio of low and high contrast AIF areas, normalized according to the corresponding heart rates. MBF was determined from the MRI, during stress and at rest, using the dual bolus and the modified dual bolus methods in 24 segments of the myocardium (total of 240 segments, five pigs in stress and rest). Due to image artifacts and technical problems 53% of the segments had to be rejected from further analyses. These two estimates were later compared against respective rest and stress PET-based MBF measurements. Results Values of MBF were determined for 112/240 regions. Correlations for MBF between the modified dual bolus method and PET was rs = 0.84, and between the traditional dual bolus method and PET rs = 0.79. The intraclass correlation was very good (ICC = 0.85) between the modified dual bolus method and PET, but poor between the traditional dual bolus method and PET (ICC = 0.07). Conclusions The modified dual bolus method showed a better agreement with PET than the traditional dual bolus method. The modified dual bolus method was found to be more reliable than the traditional dual bolus method, especially when there was variation in the heart rate. However, the difference between the MBF values estimated with either of the two MRI-based dual-bolus methods and those estimated with the gold-standard PET method were statistically significant.
  • Korpi, Riikka; Alestalo, Kirsi; Ruuska, Timo; Lammentausta, Eveliina; Ronald, Borra; Yannopoulos, Fredrik; Lehtonen, Siri; Korpi, Jarkko T.; Lappi-Blanco, Elisa; Anttila, Vesa; Lehenkari, Petri; Juvonen, Tatu; Sequieros, Roberto Blanco (2017)
    Background: Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide. Cellular decay due hypoxia requires rapid and validated methods for possible therapeutic cell transplantation. Purpose: To develop direct and rapid superparamagnetic iron oxide (SPIO) cell label for a large-animal model and to assess in vivo cell targeting by magnetic resonance imaging (MRI) in an experimental AMI model. Material and Methods: Bone marrow mononuclear cells (BMMNCs) were labeled with SPIO particles using two novel direct labeling methods (rotating incubation method and electroporation). Labeling, iron incorporation in cells and label distribution, cellular viability, and proliferation were validated in vitro. An AMI porcine model was used to evaluate the direct labeling method (rotating incubation method) by examining targeting of labeled BMMNCs using MRI and histology. Results: Labeling (1 h) did not alter either cellular differentiation potential or viability of cells in vitro. Cellular relaxation values at 9.4 T correlated with label concentration and MRI at 1.5 T showing 894% signal reduction compared with non-labeled cells in vitro. In vivo, a high spatial correlation between MRI and histology was observed. The extent of macroscopic pathological myocardial changes (hemorrhage) correlated with altered function detected on MRI. Conclusion: We demonstrated two novel direct SPIO labeling methods and demonstrated the feasibility of clinical MRI for monitoring targeting of the labeled cells in animal models of AMI.