Browsing by Subject "Magnetoencephalography"

Sort by: Order: Results:

Now showing items 1-13 of 13
  • Maestu, Fernando; Pena, Jose-Maria; Garces, Pilar; Gonzalez, Santiago; Bajo, Ricardo; Bagic, Anto; Cuesta, Pablo; Funke, Michael; Makela, Jyrki P.; Menasalvas, Ernestina; Nakamura, Akinori; Parkkonen, Lauri; Lopez, Maria E.; del Pozo, Francisco; Sudre, Gustavo; Zamrini, Edward; Pekkonen, Eero; Henson, Richard N.; Becker, James T.; Magnetoencephalography Int (2015)
    Synaptic disruption is an early pathological sign of the neurodegeneration of Dementia of the Alzheimer's type (DAT). The changes in network synchronization are evident in patients with Mild Cognitive Impairment (MCI) at the group level, but there are very few Magnetoencephalography (MEG) studies regarding discrimination at the individual level. In an international multicenter study, we used MEG and functional connectivity metrics to discriminate MCI from normal aging at the individual person level. A labeled sample of features (links) that distinguished MCI patients from controls in a training dataset was used to classify MCI subjects in two testing datasets from four other MEG centers. We identified a pattern of neuronal hypersynchronization in MCI, in which the features that best discriminated MCI were fronto-parietal and interhemispheric links. The hypersynchronization pattern found in the MCI patients was stable across the five different centers, and may be considered an early sign of synaptic disruption and a possible preclinical biomarker for MCI/DAT. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
  • Paajanen, Mikko (Helsingin yliopisto, 2019)
    Aivoverenkiertohäiriöt aiheuttavat merkittävää kuolleisuutta ja vammautuneisuutta maailmanlaajuisesti. Aivoissa esiintyy levossakin sähköistä toimintaa ja eri aivoalueilla on havaittavissa eri taajuista rytmistä toimintaa. Patologiset tilat, kuten aivoinfarkti, saavat aikaan muutoksia rytmiseen toimintaan. Tyypillisesti matalataajuinen toiminta voimistuu ja korkeampitaajuinen heikkenee. Tämän tutkimuksen tavoitteena on selvittää magnetoenkefalografialla (MEG) tunto- ja liikeaivokuoren rytmien muutoksia alfa- (7-12Hz) ja beetataajuusalueilla (13-19Hz ja 20-30Hz) keskimmäisen aivovaltimon alueen infarktin jälkeen akuuttivaiheessa sekä toipumisen aikana kuukauden ja vuoden kuluttua infarktista. Tavoitteena on vertailla aivojen syviin rakenteisiin rajoittuvan ja aivokuorelle ulottuvan vaurion aiheuttamien spontaanin aivotoiminnan muutosten eroja ja niiden yhteyttä potilaiden kliiniseen tilaan ja toipumiseen. 31 aivoinfarktipotilaan (keski-ikä 66±2) ja 22 terveen verrokin (keski-ikä 59±2) aivojen spontaanitoimintaa mitattiin MEG:llä. Potilaista 18:sta infarktialue ulottui aivokuorelle. Vaurion laajuus määritettiin magneettikuvauksella ja neurologi sekä toimintaterapeutti arvioivat potilaiden kliinistä tilaa ja toipumista. Alfa-alueella havaittiin muutoksia sekä aivojen syvien osien että aivokuoren vaurioissa, mutta muutokset olivat laadultaan erilaisia. Aivoinfarktipotilaiden alfajaksoisen toiminnan voimakkuudessa ei havaittu tilastollisesti merkitsevää eroa verrokkiryhmään. Syviin osiin rajoittuvissa vaurioissa aivopuoliskon toiminnassa oli kuitenkin merkittävää epäsymmetriaa vaurioituneen aivopuoliskon toiminnan voimistumisesta johtuen. Vastaavaa muutosta ei havaittu aivokuoren vaurioiden yhteydessä. Aivokuoren vaurioihin liittyi vaurioituneen aivopuoliskon alfa-alueen rytmin hidastuminen, joka palautui toipumisen edetessä. Matalla beeta-alueella (13-19Hz) havaittiin aivokuoren vaurioissa vastaavasti rytmin palautuvaa hidastumista. Osa havaituista muutoksista todennäköisesti liittyy suoraan aivojen vaurioitumiseen ja osa aivojen toipumiseen, mutta muutosten syiden ja kliinisen merkityksen arviointi vaatii lisäselvitystä.
  • Mutanen, Tuomas P.; Metsomaa, Johanna; Liljander, Sara; Ilmoniemi, Risto J. (2018)
    Electroencephalography (EEG) and magnetoencephalography (MEG) often suffer from noise-and artifact-contaminated channels and trials. Conventionally, EEG and MEG data are inspected visually and cleaned accordingly, e.g., by identifying and rejecting the so-called "bad" channels. This approach has several shortcomings: data inspection is laborious, the rejection criteria are subjective, and the process does not fully utilize all the information in the collected data. Here, we present noise-cleaning methods based on modeling the multi-sensor and multi-trial data. These approaches offer objective, automatic, and robust removal of noise and disturbances by taking into account the sensor-or trial-specific signal-to-noise ratios. We introduce a method called the source-estimate-utilizing noise-discarding algorithm (the SOUND algorithm). SOUND employs anatomical information of the head to cross-validate the data between the sensors. As a result, we are able to identify and suppress noise and artifacts in EEG and MEG. Furthermore, we discuss the theoretical background of SOUND and show that it is a special case of the well-known Wiener estimators. We explain how a completely data-driven Wiener estimator (DDWiener) can be used when no anatomical information is available. DDWiener is easily applicable to any linear multivariate problem; as a demonstrative example, we show how DDWiener can be utilized when estimating event-related EEG/MEG responses. We validated the performance of SOUND with simulations and by applying SOUND to multiple EEG and MEG datasets. SOUND considerably improved the data quality, exceeding the performance of the widely used channel-rejection and interpolation scheme. SOUND also helped in localizing the underlying neural activity by preventing noise from contaminating the source estimates. SOUND can be used to detect and reject noise in functional brain data, enabling improved identification of active brain areas.
  • Aikio, R.; Laaksonen, K.; Sairanen, A; Parkkonen, E.; Abou Elseoud, A.; Kujala, J.; Forss, N. (2021)
    In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15-30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magneto encephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13-30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.
  • Lankinen, Kaisu; Saari, Jukka; Hlushchuk, Yevhen; Tikka, Pia; Parkkonen, Lauri; Hari, Riitta; Koskinen, Miika (2018)
    Movie viewing allows human perception and cognition to be studied in complex, real-life-like situations in a brain-imaging laboratory. Previous studies with functional magnetic resonance imaging (fMRI) and with magneto-and electroencephalography (MEG and EEG) have demonstrated consistent temporal dynamics of brain activity across movie viewers. However, little is known about the similarities and differences of fMRI and MEG or EEG dynamics during such naturalistic situations. We thus compared MEG and fMRI responses to the same 15-min black-and-white movie in the same eight subjects who watched the movie twice during both MEG and fMRI recordings. We analyzed intra-and intersubject voxel-wise correlations within each imaging modality as well as the correlation of the MEG envelopes and fMRI signals. The fMRI signals showed voxel-wise within-and between-subjects correlations up to r = 0.66 and r = 0.37, respectively, whereas these correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency bands below 100 Hz) MEG signals (within-subjects correlation r <0.14 and between-subjects r <0.05). Direct MEG-fMRI voxel-wise correlations were unreliable. Notably, applying a spatial-filtering approach to the MEG data uncovered consistent canonical variates that showed considerably stronger (up to r = 0.25) between-subjects correlations than the univariate voxel-wise analysis. Furthermore, the envelopes of the time courses of these variates up to about 10 Hz showed association with fMRI signals in a general linear model. Similarities between envelopes of MEG canonical variates and fMRI voxel time-courses were seen mostly in occipital, but also in temporal and frontal brain regions, whereas intra-and intersubject correlations for MEG and fMRI separately were strongest only in the occipital areas. In contrast to the conventional univariate analysis, the spatial-filtering approach was able to uncover associations between the MEG envelopes and fMRI time courses, shedding light on the similarities of hemodynamic and electromagnetic brain activities during movie viewing.
  • De Tiege, Xavier; Lundqvist, Daniel; Beniczky, Sandor; Seri, Stefano; Paetau, Ritva (2017)
    Purpose: This comprehensive survey aims at characterizing the current clinical use of magnetoencephalography (MEG) across European MEG centres. Methods: Forty-four MEG centres across Europe were contacted in May 2015 via personalized e-mail to contribute to survey. The web-based survey was available on-line for 1 month and the MEG centres that did not respond were further contacted to maximize participation. Results: Among the 57% of responders, 12 centres from 10 different countries reported to use MEG for clinical applications. A total of 524 MEG investigations were performed in 2014 for the pre-surgical evaluation of epilepsy, while in the same period 244 MEG investigations were performed for pre-surgical functional brain mapping. Seven MEG centres located in different European countries performed >50 MEG investigations for epilepsy mapping in 2014, both in children and adults. In those centres, time from patient preparation to MEG data reporting tends to be lower than those investigating a lower annual number of patients. Conclusion: This survey demonstrates that there is in Europe an increasing and widespread expertise in the field of clinical MEG. These findings should serve as a basis to harmonize clinical MEG procedures and promote the clinical added value of MEG across Europe. MEG should now be considered in Europe as a mature clinical neurophysiological technique that should be used routinely in two specific clinical indications, i.e, the pre-surgical evaluation of refractory focal epilepsy and functional brain mapping. (C) 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
  • Hari, Riitta; Baillet, Sylvain; Barnes, Gareth; Burgess, Richard; Forss, Nina; Gross, Joachim; Hämäläinen, Matti; Jensen, Ole; Kakigi, Ryusuke; Mauguière, François; Nakasato, Nobukatzu; Puce, Aina; Romani, Gian-Luca; Schnitzler, Alfons; Taulu, Samu (2018)
    Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG. (C) 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V.
  • Pitkanen, Minna; ShogoYazawa; Airaksinen, Katja; Lioumis, Pantelis; Nurminen, Jussi; Pekkonen, Eero; Makela, Jyrki P. (2019)
    The mapping of the sensorimotor cortex gives information about the cortical motor and sensory functions. Typical mapping methods are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG). The differences between these mapping methods are, however, not fully known. TMS center of gravities (CoGs), MEG somatosensory evoked fields (SEFs), corticomuscular coherence (CMC), and corticokinematic coherence (CKC) were mapped in ten healthy adults. TMS mapping was performed for first dorsal interosseous (FDI) and extensor carpi radialis (ECR) muscles. SEFs were induced by tactile stimulation of the index finger. CMC and CKC were determined as the coherence between MEG signals and the electromyography or accelerometer signals, respectively, during voluntary muscle activity. CMC was mapped during the activation of FDI and ECR muscles separately, whereas CKC was measured during the waving of the index finger at a rate of 3-4 Hz. The maximum CMC was found at beta frequency range, whereas maximum CKC was found at the movement frequency. The mean Euclidean distances between different localizations were within 20 mm. The smallest distance was found between TMS FDI and TMS ECR CoGs and longest between CMC FDI and CMC ECR sites. TMS-inferred localizations (CoGs) were less variable across participants than MEG-inferred localizations (CMC, CKC). On average, SEF locations were 8 mm lateral to the TMS CoGs (p <0.01). No differences between hemispheres were found. Based on the results, TMS appears to be more viable than MEG in locating motor cortical areas.
  • Cruz, Gabriela; Grent-'t-Jong, Tineke; Krishnadas, Rajeev; Palva, J. Matias; Palva, Satu; Uhlhaas, Peter J. (2021)
    Long-Range Temporal Correlations (LRTCs) index the capacity of the brain to optimally process information. Previous research has shown that patients with chronic schizophrenia present altered LRTCs at alpha and beta oscillations. However, it is currently unclear at which stage of schizophrenia aberrant LRTCs emerge. To address this question, we investigated LRTCs in resting-state magnetoencephalographic (MEG) recordings obtained from patients with affective disorders and substance abuse (clinically at low-risk of psychosis, CHR-N), patients at clinical high-risk of psychosis (CHR-P) (n = 115), as well as patients with a first episode (FEP) (n = 25). Matched healthy controls (n = 47) served as comparison group. LRTCs were obtained for frequencies from 4 to 40 Hz and correlated with clinical and neuropsychological data. In addition, we examined the relationship between LRTCs and transition to psychosis in CHR-P participants, and the relationship between LRTC and antipsychotic medication in FEP participants. Our results show that participants from the clinical groups have similar LRTCs to controls. In addition, LRTCs did not correlate with clinical and neurocognitive variables across participants nor did LRTCs predict transition to psychosis. Therefore, impaired LRTCs do not reflect a feature in the clinical trajectory of psychosis. Nevertheless, reduced LRTCs in the beta-band over posterior sensors of medicated FEP participants indicate that altered LRTCs may appear at the onset of the illness. Future studies are needed to elucidate the role of anti-psychotic medication in altered LRTCs.
  • Piitulainen, Harri; Illman, Mia; Laaksonen, Kristina; Jousmäki, Veikko; Forss, Nina (2018)
    Corticokinematic coherence (CKC) between limb kinematics and magnetoencephalographic (MEG) signals reflects cortical processing of proprioceptive afference. However, it is unclear whether strength of CKC is reproducible across measurement sessions. We thus examined reproducibility of CKC in a follow-up study. Thirteen healthy right-handed volunteers (7 females, 21.7 +/- 4.3 yrs) were measured using MEG in two separate sessions 12.6 +/- 1.3 months apart. The participant was seated and relaxed while his/her dominant or non-dominant index finger was continuously moved at 3 Hz (4 min for each hand) using a pneumatic movement actuator. Finger kinematics were recorded with a 3-axis accelerometer. Coherence was computed between finger acceleration and MEG signals. CKC strength was defined as the peak coherence value at 3 Hz form a single sensor among 40 pre-selected Rolandic gradiometers contralateral to the movement. Pneumatic movement actuator provided stable proprioceptive stimuli and significant CKC responses peaking at the contralateral Rolandic sensors. In the group level, CKC strength did not differ between the sessions in dominant (Day-1 0.40 +/- 0.19 vs. Day-2 0.41 +/- 0.17) or non-dominant (0.35 +/- 0.16 vs. 0.36 +/- 0.17) hand, nor between the hands. Intraclass-correlation coefficient (ICC) values indicated excellent inter-session reproducibility for CKC strength for both dominant (0.86) and non-dominant (0.97) hand. However, some participants showed pronounced inter-session variability in CKC strength, but only for the dominant hand. CKC is a promising tool to study proprioception in long-term longitudinal studies in the group level to follow, e.g., integrity of cortical proprioceptive processing with motor functions after stroke.
  • Lönnberg, Piia; Pihko, Elina; Lauronen, Leena; Nurminen, Jussi; Andersson, Sture; Metsäranta, Marjo; Lano, Aulikki; Nevalainen, Päivi (2021)
    Objective: We assessed in extremely preterm born (EPB) children whether secondary somatosensory cor-tex (SII) responses recorded with magnetoencephalography (MEG) at term-equivalent age (TEA) correlate with neurodevelopmental outcome at age 6 years. Secondly, we assessed whether SII responses differ between 6-year-old EPB and term-born (TB) children. Methods: 39 EPB children underwent MEG with tactile stimulation at TEA. At age 6 years, 32 EPB and 26 TB children underwent MEG including a sensorimotor task requiring attention and motor inhibition. SII responses to tactile stimulation were modeled with equivalent current dipoles. Neurological outcome, motor competence, and general cognitive ability were prospectively evaluated at age 6 years. Results: Unilaterally absent SII response at TEA was associated with abnormal motor competence in 6-year-old EPB children (p = 0.03). At age 6 years, SII responses were bilaterally detectable in most EPB (88%) and TB (92%) children (group comparison, p = 0.69). Motor inhibition was associated with decreased SII peak latencies in TB children, but EPB children lacked this effect (p = 0.02). Conclusions: Unilateral absence of an SII response at TEA predicted poorer motor outcome in EPB children. Significance: Neurophysiological methods may provide new means for outcome prognostication in EPB children. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P. (2018)
    Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the sub thalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD.
  • Mäkelä , Niko; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J. (2018)
    Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto-or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications.