Browsing by Subject "Mantle heterogeneity"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Willig, Michael; Stracke, Andreas; Beier, Christoph; Salters, Vincent J.M. (2020)
    Mantle evolution is governed by continuous depletion by partial melting and replenishment by recycling oceanic and continental crust. Several important unknowns remain, however, such as the extent of compositional variability of the residual depleted mantle, the timescale, mass flux and composition of recycled oceanic and continental crust. Here, we investigate the Ce-Nd-Hf isotope systematics in a globally representative spectrum of mid ocean ridge and ocean island basalts. Using a Monte Carlo approach for reproducing the observed Ce-Nd-Hf isotope variation shows that the type and age of depleted mantle and recycled crust have the dominant influence on the slope, scatter, and extent of the modeled Ce-Nd-Hf isotope array. The model results suggest a relatively young (
  • Soderman, Caroline R.; Matthews, Simon; Shorttle, Oliver; Jackson, Matthew G.; Ruttor, Saskia; Nebel, Oliver; Turner, Simon; Beier, Christoph; Millet, Marc-Alban; Widom, Elisabeth; Humayun, Munir; Williams, Helen M. (2021)
    Lithological heterogeneity is a widely accepted feature of the Earth’s mantle, with recycled crustal material accounting for a significant part of heterogeneity in ocean island basalt (OIB) geochemistry. Fe isotopes have been used to link geochemical heterogeneity in OIB sources to distinct mantle lithologies due to their mineral-specific equilibrium fractionation effects, or their composition, such as incorporation of kinetically-fractionated core liquids entrained from the core-mantle boundary. Here we present Fe isotope data for Samoan shield, and Azores volcanoes, together with a combined phase-equilibria and equilibrium mineral-melt isotope fractionation model. These OIB lavas allow us to study the roles of core-derived and recycled mantle components in generating heavy δ57Fe melts. Heavy δ57Fe correlates with radiogenic isotope signatures of enrichment by a crustal component and not with Fe/Mn or any indicator of core involvement. However, single-stage melting of a MORB-like eclogitic pyroxenite cannot generate the heavy δ57Fe seen in Pitcairn, Azores, and rejuvenated Samoa lavas. Melts of a reaction-zone pyroxenite (commonly suggested to form part of the OIB source), derived from eclogite melts hybridised with peridotite, also fail to generate the heaviest Fe isotopic compositions seen in OIB. Instead, the generation of heavy δ57Fe melts in OIB requires: (1) processes that make subducted eclogite isotopically heavier than its pristine precursor MORB (e.g., hydrothermal alteration, metamorphism, sediment input); (2) lithospheric processing, such as remobilisation of previously frozen small-degree melts, or a contribution from lithospheric material metasomatised by silicate melts; and/or (3) melting conditions that limit the dilution of melts with heavy δ57Fe by ambient lower δ57Fe materials. No single process we consider can generate the heavy δ57Fe seen in the Azores, Pitcairn, and rejuvenated Samoan lavas. Therefore, it cannot be assumed that a pyroxenite lithology derived from recycled crustal material is the sole producer of heavy δ57Fe melts in OIB, nor can these signatures be related to contributions from the Earth’s core. Instead, the observation of heavy δ57Fe OIB melts cannot be ascribed to a unique source or process. This ambiguity reflects the multitude of processes operating from the generation of recycled lithologies through to their mantle melting: from MORB generation, its low temperature alteration, through mantle heterogeneity development and lithospheric processing, to eruption at ocean islands.
  • Nikkola, Paavo; Gudfinnsson, Gudmundur H.; Bali, Eniko; Ramo, O. Tapani; Fusswinkel, Tobias; Thordarson, Thorvaldur (2019)
    We present new high-precision major and trace element data on olivine macrocrysts from various volcano-tectonic settings in Iceland and use these data as a proxy for mantle mode and melting conditions. Within individual sampling sites examined (seven lavas and one tephra) olivine-dominated fractional crystallization, magma mixing and diffusive re-equilibration control observed variability in olivine composition. High-pressure fractional crystallization of clinopyroxene may have lowered Ca and increased Fe/Mn in one olivine population and subsolidus diffusion of Ni and Fe-Mg affected the mantle-derived Ni/Fo ratio in some compositionally zoned olivine macrocrysts. Interestingly, magmas erupted at the southern tip of the Eastern Volcanic Zone (SEVZ), South Iceland, have olivines with elevated Ni and low Mn and Ca contents compared to olivines from elsewhere in Iceland, and some of the SEVZ olivines have relatively low Sc and V and high Cr, Ti, Zn, Cu and Li in comparison to depleted Iceland rift tholeiite. In these olivines, the high Ni and low Mn indicate relatively deep melting (P-final>1.4GPa,similar to 45km), Sc, Ti and V are compatible with low-degree melts of lherzolite mantle, and elevated Zn may suggest modal (low-olivine) or geochemical (high Zn) enrichment in the source. The SEVZ olivine macrocrysts probably crystallized from magmas derived from olivine-bearing but relatively deep, enriched and fertile parts of the sub-Icelandic mantle, and indicate swift ascent of magma through the SEVZ lithosphere.