Browsing by Subject "Master's Programme in Atmospheric Sciences"

Sort by: Order: Results:

Now showing items 1-20 of 29
  • Le, Viet (Helsingin yliopisto, 2021)
    Atmospheric aerosol particles absorb and scatter solar radiation, directly altering the Earth’s radiation budget. These particles also have a complex role in weather and climate by changing cloud physical properties such as reflectivity by acting as cloud condensation nuclei or ice nuclei. Aerosol particles in the boundary layer are important because they pose a negative impact on air quality and human health. In addition, elevated aerosol from volcanic dust or desert dust present an imminent threat to aviation safety. To improve our understanding of the role of aerosol in influencing climate and the capability to detect volcanic ash, a ground-based network of Halo Doppler lidars at a wavelength of 1565 nm is used to collect data of atmospheric vertical profiles across Finland. By comparing the theoretical values of depolarization ratio of liquid clouds with the observed values, bleed through of each lidar is detected and corrected to improve data quality. The background noise levels of these lidars are also collected to assess their stability and durability. A robust classification algorithm is created to extract aerosol depolarization ratios from the data to calculate overall statistics. This study finds that bleed through is at 0.017 ± 0.0072 for the Uto-32 lidar and 0.0121 ± 0.0071 for the Uto-32XR lidar. By examining the time series of background noise level, these instruments are also found to be stable and durable. The results from the classification algorithm show that it successfully classified aerosol, cloud, and precipitation even on days with high turbulence. Depolarization ratios of aerosol across all the sites are extracted and their means are found to be at 0.055 ± 0.076 in Uto, 0.076 ± 0.090 in Hyytiala, 0.076 ± 0.071 in Vehmasmaki and 0.041 ± 0.089 in Sodankyla. These mean depolarization ratios are found to vary by season and location. They peak during summer, when pollen is abundant, but they remain at the lowest in the winter. As Sodankylä is located in the Artic, it has aerosols with lower depolarization ratio than other sites in most years. This study found that in summer, aerosol depolarization ratio is positively correlated with relative humidity and negatively correlated with height. No conclusion was drawn as to what processes play a more important role in these correlations. This study offers an overview of depolarization ratio for aerosol at a wavelength of 1565 nm, which is not commonly reported in literature. This opens a new possibility of using Doppler lidars for aerosol measurements to support air quality and the safety of aviation. Further research can be done test the capability of depolarization ratio at this wavelength to differentiate elevated aerosol such as dust, pollution, volcanic ash from boundary layer aerosol.
  • Rasi, Riku Johannes (Helsingin yliopisto, 2019)
    Tämä työ tarkastelee kylmää jaksoa Pohjois-Euroopassa ja erityisesti Lapissa 1.1.2017 – 6.1.2017. Tarkastelujaksolla Sodankylässä mitattiin yli neljäkymmentä astetta pakkasta, jonka Euroopan keskipitkien ennusteiden keskuksen säämalli IFS ennusti pintalämpötilan yli kymmenen astetta liian korkeaksi. Kylmä jakso ylettyi aina Bulgariaan ja Kreikaan asti antaen viitteitä laajemmasta säähäiriöstä. Näistä lähtökohdista lähdin tutkimaan, mikäli lämpötilan yliennustuksen syy olisi laajemman synoptisen skaalan häiriön epätarkka ennustaminen. Työssä visualisoin IFS:n paine ja lämpötilakenttiä Euroopan keskuksen metview alustalla ja vertaan niitä synoptiseen analyysiin sekä pinta- ja luotaushavaintoihin Sodankylästä. Käytän pohjana Euroopan keskuksen omaa raporttia poikkeuksellisesta sääilmiöistä, joka kuitenkin keskittyy enemmän Kaakkois-Euroopan poikkeukselliseen kylmyyteen ja voimakkaisiin lumisateisiin. Työssä havaitaan, että IFS ennusti synoptisen skaalan matalapainejärjestelmien ja muiden säähäiriöiden synnyn ja liikkeet tarkastelujaksolla varsin hyvin. Syy pintalämpötilan yliennustamiseen ei arvioni mukaan johdu virtaustilanteen väärästä ennustamisesta, vaan mallin tavasta käsitellä pintalämpötilaa. Erittäin stabiileissa olosuhteissa oletukset, joiden perusteella mallin pintalämpötila lasketaan, eivät tuota järkevää tulosta. Luotauksista havaitaan, että Sodankylässä vallitsi voimakas pintainversio, jota malli ei kykene täysin mallintamaan johtuen tavasta, jolla se käsittelee pinnan ja alimman mallitason välistä kerrosta. Ennustettu lämpötila poikkeaa toteutuneesta kuitenkin niin voimakkaasti, että inversion mallintamiseen liittyvät ongelmat eivät välttämättä ole ainoa virhelähde. Lopuksi tarkastelen lyhyesti raportteja mallin ongelmista ennustaa pintalämpötilaa Suomen talviolosuhteisssa, sekä miten Euroopan keskipitkien säähavaintojen keskus on itse käsitellyt ongelmaa. Globaalimallina IFS on kalibroitu tuottamaan keskimäärin osuvin ennuste koko planeetalla, ja on tärkeä tietää ne rajatapaukset, joissa sen oletukset eivät ole päteviä.
  • Poutanen, Pyry (Helsingin yliopisto, 2019)
    The Arctic is warming faster than any other region on Earth due to climate change. The characteristics of the air masses overlying the Arctic play a key role when assessing the magnitude and implications of global warming in the region, but comprehensive studies of Arctic air mass properties covering long time series of measurements are scarce. The aim of this study is to use such a data set to quantify the key characteristics of Arctic air masses prior to transport to the human-habited Eurasian continent, and the typical conditions leading to Arctic events in Värriö. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model was employed to calculate backward atmospheric trajectories arriving at SMEAR I (Station for Measuring Ecosystem-Atmosphere Relations) in Värriö for every hour in 1998-2017. An air mass was classified as Arctic if the backward trajectory arriving at Värriö was located north of 78 °N 72 hours before the arrival time. Data from SMEAR I, including meteorological variables and trace gas and aerosol concentrations, were then gathered in order to compare Arctic and non-Arctic air masses. Of all the hours that were analysed, 15.0 % were classified as associated with an Arctic air mass. The typically cyclonic curvature of the trajectories and the median duration of 10 hours per individual Arctic event were hypothesised to be due to Arctic air mass events being linked to passing low pressure systems. Arctic air masses were found to be colder and have lower moisture content in summer, when the difference at surface level was 5.6 °C and 1.7 g m-3 respectively, compared to non-Arctic air masses. In other seasons the differences were less pronounced, but average particle and trace gas concentrations were found to be notably lower for Arctic air masses than for non-Arctic air masses. An exception to this was ozone, which had 24.6 % higher average concentration in Arctic air masses in months between November and February, compared to non-Arctic air masses. The annual median aerosol particle concentration in Arctic air masses was found to be 308 cm-3 and only 129 cm-3 between November and March, on average. During a median year, the value of condensation sink (CS) was on average 65 % smaller in Arctic air masses than in the non-Arctic. The Kola Peninsula industry was observed to increase concentrations of SO2 and aerosol particles, particularly Aitken mode (25-90 nm) particles, of affected air masses. Overall, Arctic air masses were found to have several unique characteristics compared to other air masses arriving at SMEAR I, Värriö. As expected, Arctic air masses are colder and drier than non-Arctic air masses, but the difference is pronounced only in summer months. Other air mass characteristics, especially aerosol particle and trace gas concentration were generally found to be lower, unless the air mass was influenced by the industrial sites in the Kola Peninsula.
  • Clusius, Petri (Helsingin yliopisto, 2020)
    This thesis presents the Atmospherically Relevant Chemistry and Aerosol Box Model (ARCA box), which is used for simulating atmospheric chemistry and the time evolution of aerosol particles and the formation of stable molecular clusters. The model can be used for example in solving of the concentrations of atmospheric trace gases formed from some predefined precursors, simulation and design of smog chamber experiments or indoor air quality estimation. The backbone of ARCAs chemical library comes from Master Chemical Mechanism (MCM), extended with Peroxy Radical Autoxidation Mechanism (PRAM), and is further extendable with any new reactions. Molecular clustering is simulated with the Atmospheric Cluster Dynamics Code (ACDC). The particle size distribution is represented with two alternative methods whose size and grid density are fully configurable. The evolution of the particle size distribution due to the condensation of low volatile organic vapours and the Brownian coagulation is simulated using established kinetic and thermodynamic theories. The user interface of ARCA differs considerably from the previous comparable models. The model has a graphical user interface which improves its usability and repeatability of the simulations. The user interface increases the potential of ARCA being used also outside the modelling community, for example in the experimental atmospheric sciences or by authorities.
  • Thomas, Steven Job (Helsingin yliopisto, 2020)
    Biogenic Volatile Organic Compounds play a major role in the atmosphere by acting as precursors in the formation of secondary organic aerosols and by also affecting the concentration of ozone. The chemical diversity of BVOCs is vast but global emissions are dominated by isoprene and monoterpenes. The emissions of BVOCs from plants are affected by environmental parameters with temperature and light having significant impacts on the emissions. The Downy birch and Norway spruce trees consist of heavy and low volatile compounds but published results are limited up to observing sesquiterpenoid emissions from these two trees. In this study, the Vocus proton-transfer-reaction time-of-flight mass spectrometer is deployed in the field to examine BVOC emissions from Downy birch and Norway spruce trees. With higher mass resolution, shorter time response and lower limits of detection than conventional PTR instruments, the Vocus can effectively measure a broader range of VOCs. For the first time, real-time emissions of diterpenes and 12 different oxygenated compounds were observed from birch and spruce trees. The emission spectrum of birch was dominated by C10H17+, while for spruce C5H9+ contributed the most. The sum emissions of oxygenated compounds contributed significantly to the observed total emissions from both the trees. The emission rates of all compounds varied dramatically throughout the period due to fluctuations in temperature and light. Due to lack of data from spruce, conclusive results for temperature and light response on terpene emissions could not be drawn. For birch, the emission rates were well explained by the temperature and temperature-light algorithms. The terpene emissions modelled using both algorithms correlated similarly with experimental data making it difficult to decisively conclude if the emissions originated from synthesis or pools.
  • Li, Xiaoyu (Helsingin yliopisto, 2020)
    Urban areas account for 70% of worldwide energy-related CO2 emissions and play a significant role in the global carbon budget. With the enhanced consumption of fossil fuel and the dramatic change in land use related to urbanization, control and mitigation of CO2 emissions in the urban area is becoming a major concern for urban dwellers and city managers. It is of great importance and demand to estimate the local CO2 emissions in urban areas to assess the effectiveness of mitigation regulation. Surface Urban Energy and Water Balance Scheme (SUEWS) incorporated with a CO2 exchange module provides an advanced method to model total urban CO2 flux and quantify the different local-scale emission sectors involving transportation, human metabolism, buildings and vegetation. Using appropriate input data such as detailed site information and meteorological condition, it can simulate the local or neighbourhood scale CO2 emissions in a specific period, or even under a future scenario. In this study, the SUEWS model is implemented in an urban region, Jätkäsaari, which is an extension of Helsinki city centre, to simulate anthropogenic and biogenic CO2 emissions in the past and future. The construction of this district started in 2009 and was planned to be completed in 2030. Therefore, this region is a good case to investigate the impacts of urban planning on urban CO2 emissions. Based on the urban surface information, meteorological data, and abundant emission parameters, a simulation in this 1650 × 1400 m area with the spatial resolution of 50 × 50 m and the time resolution of an hour was conducted with the aim to get information on the total annual CO2 emissions, and the temporal and spatial variability of CO2 fluxes from different sources and sink in 2008 and 2030. The positive CO2 fluxes indicate the CO2 sources, while the negative indicate the CO2 sinks. In both of the previous and future case, the spatial variation of net CO2 fluxes in Jätkäsaari is dominated by the distribution of traffic and human activities. From April to September, the vegetation acts as the CO2 sink with negative net ecosystem exchange. In 2008, the modelled cumulative CO2 flux is 3.0 kt CO2 year-1, consisting of 1.9 kt CO2 year-1 from metabolism, 1.9 kt CO2 year-1 from traffic, 0.5 kt CO2 year-1 from soil and vegetation respiration, as well as -1.3 kt CO2 year-1 from photosynthesis. In 2030, the total annual CO2 emissions increase to 11.1 kt CO2 year-1 because of the rising traffic volume and amount of inhabitants. Road traffic became the dominant CO2 sources, accounting for 53% of the total emissions. For the diurnal variation, in 2008, the study area remains the CO2 sources with the exception of summertime morning when the net CO2 flux is negative, while in 2030, the net CO2 flux is positive in the whole day.
  • Suhonen, Elli (Helsingin yliopisto, 2021)
    International shipping is globally a major source of atmospheric nitrogen oxides (NOx). It has been widely recognized that these emissions have negative effects on maritime air quality and human health. For a long time, shipping was the least regulated NOx emission source, but now first regulations for ship exhaust NOx emissions started as of January 2021. Shipping emissions must be monitored so the obedience of these regulations can be followed. Different measurement techniques are developed to address the problems related to shipping emission monitoring. The purpose of this thesis is to demonstrate how tropospheric nitrogen dioxide (NO2) concentration measurements by TROPOspheric Monitoring Instrument (TROPOMI) onboard Copernicus Sentinel 5 Precursor (S5P) satellite can be used to characterize signatures of shipping emissions. The capability of TROPOMI to detect busy shipping lanes and port areas was first tested with a large study area of the whole Eastern Mediterranean Sea. Analysis was supported with shipping emission data inventory from the Ship Traffic Assessment Model (STEAM). Results showed elevated NO2 concentrations close to major port areas, especially if the dominant wind direction on the water area was from the continent. These elevated concentrations were most likely a result of both transported urban emissions and shipping emissions. STEAM and TROPOMI grid cell comparison was done over the busiest shipping lane area over the open sea, and the results showed that if the monthly summed shipping emission amount was either small or very large, the signal of shipping emissions was affected by background concentrations. More detailed shipping emission study was done at port Piraeus and the surrounding sea area. There, satellite measurement analysis was done by selecting three smaller study areas for comparison, one over the city of Athens, the second one close to the port Piraeus and the third one over the open sea. Relation between the satellite observations of NO2 and modelled shipping emissions of NOx was obtained in the study area that was over the open sea, the center of the area being 35 km from the coast. The signal of shipping emissions was not detected close to the port, most likely because of the influence of other emission sources. Lastly, spring and summer 2020 were analysed separately in more detail, as they were included in the overall study period of this thesis but the air pollution patterns at that time were affected by the extraordinary COVID-19 pandemic restrictions. The results showed unusually small average NO2 concentrations over the city of Athens during spring 2020. Meteorological observations from that time period did not show anything that could fully explain the decrease. Observations over the sea close to Piraeus showed no clear difference between 2019 and 2020 average concentrations, so the pandemic possibly had only a minor impact on the shipping emissions in the port area.
  • Tuomola, Laura (Helsingin yliopisto, 2021)
    Cumulonimbus (Cb) clouds form a serious threat to aviation as they can produce severe weather hazards. Therefore, it is important to detect Cb clouds as well as possible. Finnish Meteorological Institute (FMI) provides aeronautical meteorological services in Finland, including METeorological Aerodrome Report (METAR). METAR describes weather at the aerodrome and its vicinity. Significant weather is reported in METARs, and therefore Cb clouds must be included in it. At Helsinki-Vantaa METARs are done manually by human observer. Sometimes Cb detection can be more difficult, for example, when it is dark, and it is also expensive to have human observers working around the clock all year round. Therefore, automation of Cb detection is a topical matter. FMI is applying an algorithm that uses weather radar observations to detect Cb clouds. This thesis studies how well the algorithm can detect Cb clouds compared to manual observations. The dataset used in this thesis contains summer months (June, July and August) from 2016 to 2020. Various verification scores can be calculated to analyse the results. In addition, daytime and night-time differences are calculated as well as different years and months are compared together. The results show that the algorithm is not adequate to replace human observers at Helsinki-Vantaa. However, the algorithm could be improved, for instance, by adding satellite observations to improve detection accuracy.
  • Lee, Hei Shing (Helsingin yliopisto, 2021)
    In atmospheric sciences, measurements provided by remote-sensing instruments are crucial in observing the state of atmosphere. The associated uncertainties are important in nearly all data analyses. Random uncertainties reported by satellite instruments are typically estimated by inversion algorithms (ex-ante). They can be incomplete due to simplified or incomplete modelling of atmospheric processes used in the retrievals, and thus validating random uncertainties is important. However, such validation of uncertainties (or their estimates from statistical analysis afterwards, i.e. ex-post) is not a trivial task, because atmospheric measurements are obtained from the ever-changing atmosphere. This Thesis aims to explore the structure function method – an important approach in spatial statistics – and apply it to total ozone column measurements provided by the nadir-viewing satellite instrument TROPOMI. This method allows us to simultaneously perform validation of reported ex-ante random uncertainties and to explore of local-scale natural variability of atmospheric parameters. Two-dimensional structure functions of total ozone column have been evaluated based on spatial separations in latitudinal and longitudinal directions over selected months and latitude bands. Our results have indicated that the ex-post random uncertainties estimated agree considerably well with the reported ex-ante random uncertainties, which are within 1-2 DU. Discrepancies between them are very small in general. The morphology of ozone natural variability has also been illustrated: ozone variability is minimal in the tropics throughout the year, whereas in middle latitudes and polar regions they attain maxima in local spring and winter. In every scenario, the ozone structure functions are anisotropic with a stronger variability in the latitudinal direction, except at specific seasons in polar regions where isotropic behaviour is observed. Our analysis has demonstrated that the structure function method is a remarkable and promising tool for validating random uncertainties and exploring natural variability. It has a high potential for applications in other remote sensing measurements and atmospheric model data.
  • Graeffe, Frans (Helsingin yliopisto, 2019)
    Atmospheric aerosols affect the Earth's radiative balance, visibility and human health. Therefore the formation processes and growth of these particles are important and should be studied to understand how human and natural processes affects these processes. One poorly understood and relatively little studied part of aerosols is particulate organic nitrates (pONs). These pONs are mostly formed during nighttime when NOx, mainly emitted from fossil fuel combustion and industrial processes, and volatile organic compounds (VOCs), from both natural and anthropogenic sources, reacts in the atmosphere. The quantification of these pONs is still hard due to instrumental restrictions, although much improvement has happened during recent years. One main reason for these challenges is the difficulty to separate inorganic nitrates from organic nitrates with real-time instruments. During this work, we generated pure pON in well controlled laboratory conditions and sampled it with an Aerosol Mass Spectrometer (AMS), an instrument widely used for measuring the chemical composition of atmospheric aerosols. We used four different pON precursors to generate pON. I investigated the fragmentation patterns of pON detected by the AMS, utilizing the high resolution of the newest model of the AMS. As older versions of the AMS has difficulties to separate nitrate-containing organic fragments due to lower resolution than the AMS I used, I was able to study pON mass spectrum with better resolution than anyone before me. I found mass spectral differences for the different pON precursors, and was able to find unique fragments for some of the pON precursors that possibly can be used as marker fragments.
  • Erkkilä, Anttoni (Helsingin yliopisto, 2021)
    Gulf of Bothnia was simulated with NEMO sea model and LIM3 sea ice model. The results were used to count ice area, ice thickness, ice season length and the dates for freezing ang thawing. Results contained years from 1975 to 2059 but only years from 2006 were mostly used. Before 2006 the model was forced with a statistical history run. It was compared to thickness observations and the ice model was considered reliable enough. Atmospheric forcings became from three earth system models and two emission scenarios. With smaller emissions results about ice conditions and its trends vary between model runs with different focings a lot more than with higher emissions. In many case a propability distribution was used on results unlike on earlier similar researches which have mostly used only medians of ice parameters. Propability distribution for ice area was made using cumulative Gumbel probability distribution which enabled counting time periods longer than the time series. It also increased the reliability of extreme results. According to the results the northen part of the Bay of Bothnia freezes in every winter at 2050s. Ice thickness is 80cm at the most and median is 50cm. In almost every result southern part of the Bothnian Sea has over 50% chance for ice to occur and the median of thickness is more than 10cm. Length of the ice season close to 2050s can exeed 150 days often at the northen Bay of Bothnia but elsewhere it is closer to 100 days and varies a lot. The counted propability distributions for ice area let us suspect that a part of the Bay of Bothnia would remain unfreezed at least once every 30 years or more propably every 20 years in years from 2006 to 2059. In contradiction, not much can be said about large areas, because results vary a lot about wheter the whole Gulf of Bothnia can be expected to freeze close to 2050s.
  • Kuittinen, Salla (Helsingin yliopisto, 2021)
    Auringon säteilyn voimakkuus vaihtelee vuodenaikojen mukaan Suomessa. Tämän seurauksena järvien kerrostuneisuudessa tapahtuu muutoksia. Värriön luonnonpuistossa järvien tutkimus on ollut vähäistä, ja lämpötilaseurantaa ei aikaisemmin alueen järvissä ole tehty ympärivuotisesti. Aineiston avulla selvitettiin Kuutsjärven ja Tippakurulammen lämpötilan muutoksia, eroavaisuuksia, päivittäisiä muutoksia sekä lumen vaikutusta kevään lämpenemiseen tarkastelujakson aikana. Tutkimusaineisto on kerätty Värriön luonnonpuiston Kuutsjärvestä ( 67° 44'N ja 29° 36'E) sekä Tippakurulammesta (67° 46'N ja 29° 37'E) vuosina 2009–2012. Molemmissa järvissä oli yksi termistoriketju järven syvimmässä kohdassa. Termistoreita ketjussa oli viisi kappaletta. Tulosten tarkastelussa apuna käytettiin Ilmatieteen laitoksen sää- ja lumihavaintoja. Auringon säteilyn voimakkuus on merkittävin Kuutsjärven ja Tippakurulammen lämpötiloihin vaikuttava tekijä. Päivittäisissä muutoksissa ei ole eroavaisuuksia järvien välillä. Tippakurulampi lämpenee tummempana ja matalampana järvenä pohjaa myöten kesän aikana. Kesän aikana sedimenttiin varastoitunut lämpö purkautuu talvella veteen. Kevään täyskierto on molemmissa järvissä lyhyt ja tapahtuu toukokuun loppupuolella. Syksyn täyskierto on Tippakurulammessa Kuutsjärveä pidempi, ja Tippakurulampi jäähtyy sekoittuneessa tilassa. Eroavaisuudet järvien välillä johtuvat koko- ja värieroista.
  • Ala-Könni, Joonatan (Helsingin yliopisto, 2019)
    Mixing processes under a seasonal ice cover in boreal lakes have received little attention from the physical limnological community. Even though the water is calm under the ice cover, many different phenomena are still able to cause mixing in the water column, which in turn affects the gas fluxes as well as physical and chemical properties of the water. Lakes in the boreal zone are very numerous. Understanding their behaviour helps us predict the effects of climate change in the boreal zone. In my thesis I present the various mechanisms that reign under the ice cover, and attempt to see these mechanisms in action in lake Kuivajärvi. Emphasis was placed on internal waves and the various components of the energy balance that can induce mixing. Data was collected with thermistor chains and a measurement raft between 24.1. – 3.5.2017. Two types of internal waves were observed during the ice-on season of 2016 – 2017. Short period barotropic seiches were observed during the whole ice-on season and transient long period baroclinic seiches were observed on two occasions. Other mixing processes seen in the lake were sediment heating in the dead of winter, penetrative convection caused by short wave radiation in the spring and diurnal stratification and mixing during spring caused by the daily heating and nightly cooling. Some mixing under the ice cover was found to depend on the meteorological conditions prevailing over the lake during the previous summer and just before the ice-on in late autumn, while others were more predictable. Long period internal waves and sediment heating are set in motion by meteorological conditions, while the spring mixing and overturn are more stable, due them being more a function of the orbital mechanics of our planet than the prevailing weather. Varying surface conditions of the lake ice cover make the measurement of especially the surface temperature complicated. Snow and ice are under a continuous metamorphosis due to the weather. This makes surface emissivity difficult to estimate, causing significant errors in the measurement of the outgoing longwave radiation. This in turn causes problems in defining the surface temperature from it. Also, the precipitation heat flux is difficult to estimate due to the lack of knowledge on the surface temperature.
  • Kröger, Anni (Helsingin yliopisto, 2019)
    Earth’s energy budget describes the balance between the net incoming and outgoing energy fluxes, and the energy balance approach can be used to better understand the basic physical mechanisms of climate change. Anthropogenic changes in the atmospheric composition, such as increases in greenhouse gases, drive changes in climate system which in turn can cause rising of the global temperatures. Various feedbacks, associated with increase in atmospheric water vapor content, changes in clouds and reduced snow/ice cover, affect the pattern of surface warming by altering the fluxes of energy. By studying the energy balance at the top of the atmosphere and at the surface, we gain useful information about the climate system’s response to changes in the atmospheric composition. In this thesis, data for 23 climate models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) was used. The present-day distributions and future projections of the simulated changes (under RCP8.5 emission scenario, Representative Concentration Pathway) for 14 radiative and non-radiative energy budget components, along with the changes in surface temperature and cloud cover were studied, with baseline period of 1981-2010 and a comparison scenario period of 2071-2100. The geographical distributions of the multimodel mean changes and their global averages were analysed. Additionally, the intermodel consistency of the simulated changes was studied with the intermodel standard deviations and the ratio of multimodel mean change to the intermodel standard deviation. Furthermore, the intermodel correlation between the change in surface temperature and each energy budget variable was discussed. A general finding was that the multimodel mean surface temperature increases everywhere, more over land than oceans, and that the warming is amplified over the northern polar regions. The changes were largest for the thermal radiation fluxes, and the dominating contribution to the surface warming was concluded to be the change in clear- sky atmospheric re-radiation component. However, increase in absorbed shortwave radiation, presumably due to reduced ice/snow cover and increase in atmospheric water vapor content, was also found to be substantial, and there was a strong negative correlation between the clear-sky downward shortwave radiation flux and the change in temperature over the low-to-mid latitudes. The comparison of contribution of the changes in longwave and shortwave fluxes to global warming in the near-future and long-term climate model projections could be an interesting subject for future studies. Additionally, the changes in the surface energy fluxes were found to modify the pattern of surface warming.
  • Rautiainen, Laura (Helsingin yliopisto, 2020)
    Ocean reanalysis products (ORAs) can provide information on the state of the ocean. Although the different data sources, model configurations, forcing choices and assimilation methods cause the ORAs to deviate from each other, the ensemble approach has been previously found to produce realistic mean states. This raises the question if ORAs could be used for studying temporal and spatial changes in the Arctic Ocean, where measurements are generally sparse. Such study has not been previously published. In this thesis, the changes in the hydrography of the Arctic Ocean are examined over the previous decades based on selected ORAs. Eleven ORAs, TOPAZ4, C-GLORS025v5, ECDA3, GECCO2, GLORYS2v4, GloSea5-GO5, MOVE-G2i, ORAP5, SODA3.3.1, UR025.4 and ORAS5, were chosen for this study due to their overlap over 1993–2010 and the multimodel ensemble (MMM) was formulated based on the products, excluding ECDA3. The data were divided into depth layers and layer-average salinities and temperatures were used to calculate basin-average anomaly time series and trends to study the observed temporal changes. Per-grid trends were also produced to study both spatial and temporal changes in more detail. To assess their reliability, trends from the MMM and individual ORAs were compared to an observational product, EN4.2.0.g10 and the variability in the products and the MMM was assessed using statistical measures. The Eurasian Basin was found to be warming across all layers (up to 0.3 ◦ C decade −1 ) accompanied by salinification, except for localised cooling in the top 100 meters in the western basin, near the Fram Strait (-0.2 ◦ C decade −1 ). This indicates additional heat uptake by the surface 0–100 meters and also increasing heat and salinity content of the AW inflow, while the transport of sea ice out of the AO has increased. The Amerasian Basin, on the other hand, showed a strong freshening trend culminating at the Beaufort Gyre. This is most likely due to the anticyclonic wind forcing and increasing freshwater inflow to the Beaufort Sea. The Amerasian Basin also showed a warming trend in the 300–700 m layers but a cooling trend in the 100–300 m layer north of the Chukchi Sea. The ensemble approach worked well in dampening the extremities of singular ORAs, but some trends observed in the literature were missed due to disagreements between ORAs, especially in the Fram Strait and Beaufort Sea, which suggest that further improvements in both models and measurements are needed in those areas. Furthermore, improvements in deep ocean observations, how models handle the deeper ocean and assimilation methods are needed in order to study trends in the deeper depths in the AO. All in all, as the improvements come, the ORA MMM shows great potential for studies in the AO.
  • Arola, Aleksi (Helsingin yliopisto, 2021)
    Freshwater ecosystems are an important part of the carbon cycle. Boreal lakes are mostly supersaturated with CO2 and act as sources for atmospheric CO2. Dissolved CO2 exhibits considerable temporal variation in boreal lakes. Estimates for CO2 emissions from lakes are often based on surface water pCO2 and modelled gas transfer velocities (k). The aim of this study was to evaluate the use of a water column stratification parameter as proxy for surface water pCO2 in lake Kuivajärvi. Brunt-Väisälä frequency (N) was chosen as the measure of water column stratification due to simple calculation process and encouraging earlier results. The relationship between N and pCO2 was evaluated during 8 consecutive May–October periods between 2013 and 2020. Optimal depth interval for N calculation was obtained by analysing temperature data from 16 different measurement depths. The relationship between N and surface pCO2 was studied by regression analysis and effects of other environmental conditions were also considered. Best results for the full study period were obtained via linear fit and N calculation depth interval spanning from 0.5 m to 12 m. However, considering only June–October periods resulted in improved correlation and the relationship between the variables more closely resembling exponential decay. There was also strong inter-annual variation in the relationship. The proxy often underestimated pCO2 values during the spring peak, but provided better estimates in summer and autumn. Boundary layer method (BLM) was used with the proxy to estimate CO2 flux, and the result was compared to fluxes from both BLM with measured pCO2 and eddy covariance (EC) technique. Both BLM fluxes compared poorly with the EC flux, which was attributed to the parametrisation of k.
  • Li, Xinyang (Helsingin yliopisto, 2020)
    The impacts of dust aerosols on human health and climate change are increasing as the particulate matter (PM) mass concentrations and frequency of Sand and Dust Storm (SDS) episodes have shown an increasing trend in recent studies, especially for the Middle East and North Africa (MENA). In this thesis, particulate matter (PM10 and PM2.5) concentrations were measured during May 2018–March 2019 in the urban atmosphere of Amman, Jordan. The PM sampling was 24-hours every 6 days. The overall mean PM10 mass concentration was 64±39 μg/m3 with the median (+interquartile range) value of 49.2+53.5 μg/m3, the PM2.5 mass concentration varied between 15 μg/m3 and 190 μg/m3 with an annual average 47±32 μg/m3 and with the median (+interquartile range) value of 35.8+26.3 μg/m3. The PM2.5 / PM10 ratio was 0.8±0.2. According to the Jordanian Air Quality standards, the annual mean PM10 needs to be below a limit value of 120 μg/m3, which was true in this work. However, the PM2.5 mass concentration was three times higher the corresponding limit value (65 μg/m3). However, both exceeded the World Health Organization (WHO) air quality annual guideline of 20 μg/m3 for PM10 and 10 μg/m3 for PM2.5. The results show that the observed PM10 mass concentrations in Jordan were lower than what was reported in other cities in the Middle East but were higher when compared to other Mediterranean cities. During the measurement period, Jordan was affected by Sand and Dust Storms (SDS), which were observed on 14 sampling days. The source origins of these SDS were traced back to North Africa, the Arabian Peninsula, and the Levant. The 24-hour PM10 concentrations during these SDS episodes ranged between 108.1 μg/m3 and 187.3 μg/m3. In the future, measurements with a higher time resolution (one sample per day) are recommended for a more precise seasonal trend interpretation.
  • Mahó, Sándor István (Helsingin yliopisto, 2021)
    This thesis analyses the alterations of vertically integrated atmospheric meridional energy transport due to polar amplification on an aqua planet. We analyse the energy transport of sensible heat, latent energy, potential energy and kinetic energy. We also cover the energy flux of the mean meridional circulation, transient eddies and stationary eddies. In addition, we also address the response of the zonal mean air temperature, zonal mean zonal wind, zonal mean meridional wind, zonal mean stream function and zonal mean specific humidity. Numerical model experiments were carried out with OpenIFS in its aqua planet configuration. A control (CTRL) and a polar amplification (PA) simulation was set up forced by different SST (sea surface temperature) patterns. We detected tropospheric warming and atmospheric specific humidity increase 15-90° N/S and reduction of the meridional temperature gradient throughout the troposphere. We also found reduced strength of the subtropical jet stream and slowdown of the mean meridional circulation. Important changes were identified in the Hadley cell: the rising branch shifted poleward and caused reduced lifting in equatorial areas. Regarding the total atmospheric vertically integrated meridional energy transport, we found reduction in case of the mean meridional circulation and transient eddies in all latitudes. The largest reduction was shown by the Hadley cell transport (-15%) and by midlatitude transient eddy flux (-23%). Unlike most studies, we did not observe that meridional latent energy transport increases by polar amplification. Therefore, it is stated that the increased moisture content of the atmosphere does not imply increased meridional latent energy transport, and hence there is no compensation for the decrease of meridional dry static energy transport. Lastly, we did not detect stationary eddies in our simulations which is caused by the simplified surface boundary (i.e. the water-covered Earth surface). The main finding of this thesis is that polar amplification causes decreasing poleward energy transport on an aqua planet.
  • Al Dulaimi, Qusay (Helsingin yliopisto, 2020)
    Sand and dust storms are one of the major regional environmental problems that affect human health. Many environmental studies have focused on airborne dust concentrations observed at different regions and have tried to connect the observations to specific dust source regions. This thesis aims to provide a new dust classifications scheme for the Eastern Mediterranean region, specifically observed in Amman, Jordan. I utilized a combination of a long-term data-base consisting of aerosol particle number concentration in coarse mode (1–10 µm) during November 2013 – July 2018 and air mass back trajectories analysis to visually identify the Sand and Dust Storm (SDS) episodes. The classification included three main source regions of for the submicron dust, namely Sahara, Arabia, and Levant. I also classified the data according to the, episode intensity according to their corresponding number concentrations as no-dust, mild, intermediate, and strong intensities and further classified the range of back trajectories as short, intermediate, long, and very long, which indicates the distance between the observation site and the source region.. The results showed that majority of the dust events and an elevated number of dust days are influenced by a source in Levant and Sahara source region. These events which dominated during 70 days in 2016. The Levant source governed during 60 days during the same period. Other dust sources contributed less to the dusty days, and the lowest dusty days number was due to emissions from Levant & Arabia (19 days). The episode intensity varied censurably and underlined variability from the different source areas. The maximum intensity in the dust episode concentration was linked to Levant & Sahara with a max number concentration of 95 /cm3. The classification method was successful and it was able to establish a dust source database in the Eastern Mediterranean region based on the long-term observations performed in Amman with variable dust concentration and dust periods in different seasons and different meteorological circumstances.
  • Ovaska, Aino (Helsingin yliopisto, 2021)
    Cloud condensation nuclei (CCN) participate in controlling the climate, and a better understading of their number concentrations is needed to constrain the current uncertainties in Earth’s energy budget. However, estimating the global CCN concentrations is difficult using only localised in-situ measurements. To overcome this, different proxies and parametrisations for CCN have been developed. In this thesis, accumulation mode particles were used as a substitute for CCN, and continental proxy for number concentration of N100 was developed with CO and temperature as tracers for anthropogenic and biogenic emissions. The data utilised in the analysis contained N100 measurements from 22 sites from 5 different continents as well as CO and temperature from CAMS reanalysis dataset. The thesis aimed to construct a global continental proxy. In addition to this, individual proxies for each site (the site proxy) and proxies trained with other sites’ data (the site excluded proxy) were developed. The performance of these proxies was evaluated using a modified version of K-fold cross-validation, which allowed estimating the effect of dataset selection on the results. Additionally, time series, seasonal variation, and parameter distributions for developed proxies were analysed and findings compared against known characteristics of the sites. Global proxy was developed, but no single set of parameters, that would achieve the best performance at all sites, was found. Therefore, two versions of global proxy were selected and their results analysed. For most of the sites, the site proxy performed better than the global proxies. Additionally, based on the analysis from the site excluded proxy, extrapolating the global proxy to new locations produced results with varying accuracy. Best results came from sites with low concentrations and occasional anthropogenic transport episodes. Additionally, some European rural sites performed well, whereas in mountainous sites the proxy struggled. Comparing the proxy to literature, it performed generally less well or similarly as proxies from other studies. Longer datasets and additional measurement sites could improve the proxy performance.