Browsing by Subject "Microbiota"

Sort by: Order: Results:

Now showing items 1-20 of 25
  • Eshriqui, Ilana; Viljakainen, Heli T.; Ferreira, Sandra; Raju, Sajan C.; Weiderpass, Elisabete; Figueiredo, Rejane A. O. (2020)
    Background Breastfeeding contributes to gastrointestinal microbiota colonization in early life, but its long-term impact is inconclusive. We aimed to evaluate whether the type of feeding during the first six months of life was associated with oral microbiota in adolescence. Methods This is a cross-sectional sub-study using baseline information of 423 adolescents from the Finnish Health in Teens (Fin-HIT) cohort. Type of feeding was recalled by parents and dichotomized as (i) No infant formula; (ii) Infant formula (breastmilk + formula or only formula). Saliva microbiota was analysed using 16S rRNA (V3-V4) sequencing. Alpha diversity and beta diversity were compared between feeding type groups using ANCOVA and PERMANOVA, respectively. Differential bacteria abundance was tested using appropriate general linear models. Results Mean age and body mass index were 11.7 years and 18.0 kg/m(2), respectively. The No formula group contained 41% of the participants. Firmicutes (51.0%), Bacteroidetes (19.1%), and Proteobacteria (16.3%) were the most abundant phyla among all participants. Alpha and beta diversity indices did not differ between the two feeding groups. Three Operational Taxonomic Units (OTUs) belonging to Eubacteria and Veillonella genera (phylum Firmicutes) were more abundant in the No formula than in the Infant formula group (log2fold changes/ p - values - 0.920/ <0.001, - 0.328/ 0.001, - 0.577/ 0.004). Conclusion Differences exist in abundances of some OTUs in adolescence according to feeding type during the first six months of life, but our findings do not support diversity and overall oral microbiota composition in adolescents being affected by early feeding type.
  • Eshriqui, Ilana; Viljakainen, Heli T; Ferreira, Sandra R G; Raju, Sajan C; Weiderpass, Elisabete; Figueiredo, Rejane A O (BioMed Central, 2020)
    Abstract Background Breastfeeding contributes to gastrointestinal microbiota colonization in early life, but its long-term impact is inconclusive. We aimed to evaluate whether the type of feeding during the first six months of life was associated with oral microbiota in adolescence. Methods This is a cross-sectional sub-study using baseline information of 423 adolescents from the Finnish Health in Teens (Fin-HIT) cohort. Type of feeding was recalled by parents and dichotomized as (i) No infant formula; (ii) Infant formula (breastmilk + formula or only formula). Saliva microbiota was analysed using 16S rRNA (V3–V4) sequencing. Alpha diversity and beta diversity were compared between feeding type groups using ANCOVA and PERMANOVA, respectively. Differential bacteria abundance was tested using appropriate general linear models. Results Mean age and body mass index were 11.7 years and 18.0 kg/m2, respectively. The No formula group contained 41% of the participants. Firmicutes (51.0%), Bacteroidetes (19.1%), and Proteobacteria (16.3%) were the most abundant phyla among all participants. Alpha and beta diversity indices did not differ between the two feeding groups. Three Operational Taxonomic Units (OTUs) belonging to Eubacteria and Veillonella genera (phylum Firmicutes) were more abundant in the No formula than in the Infant formula group (log2fold changes/ p - values − 0.920/ < 0.001, − 0.328/ 0.001, − 0.577/ 0.004). Conclusion Differences exist in abundances of some OTUs in adolescence according to feeding type during the first six months of life, but our findings do not support diversity and overall oral microbiota composition in adolescents being affected by early feeding type.
  • Forsgard, Richard A.; Marrachelli, Vannina G.; Korpela, Katri; Frias, Rafael; Carmen Collado, Maria; Korpela, Riitta; Monleon, Daniel; Spillmann, Thomas; Osterlund, Pia (2017)
    Purpose Chemotherapy-induced gastrointestinal toxicity (CIGT) is a complex process that involves multiple pathophysiological mechanisms. We have previously shown that commonly used chemotherapeutics 5-fluorouracil, oxaliplatin, and irinotecan damage the intestinal mucosa and increase intestinal permeability to iohexol. We hypothesized that CIGT is associated with alterations in fecal microbiota and metabolome. Our aim was to characterize these changes and examine how they relate to the severity of CIGT. Methods A total of 48 male Sprague-Dawley rats were injected intraperitoneally either with 5-fluorouracil (150 mg/kg), oxaliplatin (15 mg/kg), or irinotecan (200 mg/kg). Body weight change was measured daily after drug administration and the animals were euthanized after 72 h. Blood, urine, and fecal samples were collected at baseline and at the end of the experiment. The changes in the composition of fecal microbiota were analyzed with 16S rRNA gene sequencing. Metabolic changes in serum and urine metabolome were measured with 1 mm proton nuclear magnetic resonance (1H-NMR). Results Irinotecan increased the relative abundance of Fusobacteria and Proteobacteria, while 5-FU and oxaliplatin caused only minor changes in the composition of fecal microbiota. All chemotherapeutics increased the levels of serum fatty acids and N(CH3)(3) moieties and decreased the levels of Krebs cycle metabolites and free amino acids. Conclusions Chemotherapeutic drugs, 5-fluorouracil, oxaliplatin, and irinotecan, induce several microbial and metabolic changes which may play a role in the pathophysiology of CIGT. The observed changes in intestinal permeability, fecal microbiota, and metabolome suggest the activation of inflammatory processes.
  • Jalanka, Jonna; Lam, Ching; Bennett, Andrew; Hartikainen, Anna; Crispie, Fiona; Finnegan, Laura A.; Cotter, Paul D.; Spiller, Robin (2021)
    Background/Aims Diarrhea-predominant irritable bowel syndrome (IBS-D) has been previously associated with evidence of immune activation and altered microbiota. Our aim is to assess the effect of the anti-inflammatory agent, mesalazine, on inflammatory gene expression and microbiota composition in IBS-D. Methods We studied a subset of patients (n = 43) from a previously published 12-week radomized placebo-controlled trial of mesalazine. Mucosal biopsies were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction for a range of markers of inflammation, altered permeability, and sensory receptors including Toll-like receptors (TLRs) at randomization after treatment. All biopsy data were compared to 21 healthy controls. Patient's stool microbiota composition was analysed through 16S ribosomal RNA sequencing. Results We found no evidence of increased immune activation compared to healthy controls. However, we did find increased expression of receptors in both sensory pathways and innate immune response including TLR4. Higher TLR4 expression was associated with greater urgency. TLR4 expression correlated strongly with the expression of the receptors bradykinin receptor B2, chemerin chemokine-like receptor 1, and transient receptor potential cation channel, subfamily A, member 1 as well as TLR4's downstream adaptor myeloid differentiation factor 88. Mesalazine had minimal effect on either gene expression or microbiota composition. Conclusions Biopsies from a well-characterized IBS-D cohort showed no substantial inflammation. Mesalazine has little effect on gene expression and its previous reported effect on fecal microbiota associated with much greater inflammation found in inflammatory bowel diseases is likely secondary to reduced inflammation. Increased expression of TLR4 and correlated receptors in IBS may mediate a general increase in sensitivity to external stimuli, particularly those that signal via the TLR system.
  • Swann, J. R.; Rajilic-Stojanovic, M.; Salonen, A.; Sakwinska, O.; Gill, C.; Meynier, A.; Fanca-Berthon, P.; Schelkle, B.; Segata, N.; Shortt, C.; Tuohy, K.; Hasselwander, O. (2020)
    With the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota-host interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods.
  • Cheng, Jing; Kalliomaki, Marko; Heilig, Hans G. H. J.; Palva, Airi; Lahteenoja, Hannu; de Vos, Willem M.; Salojarvi, Jarkko; Satokari, Reetta (2013)
  • Bekker, Vincent; Zwittink, Romy D.; Knetsch, Cornelis W.; Sanders, Ingrid M. J. G.; Berghuis, Dagmar; Heidt, Peter J.; Vossen, Jaak M. J. J.; de Vos, Willem M.; Belzer, Clara; Bredius, Robbert G. M.; van't Hof, Peter J.; Lankester, Arjan C.; Kuijper, Ed J. (2019)
    Bloodstream infections and graft-versus-host disease are common complications after hematopoietic stem cell transplantation (HSCT) procedures, associated with the gut microbiota that acts as a reservoir for opportunistic pathogens. Selective gut decontamination (SGD) and total gut decontamination (TGD) during HSCT have been associated with a decreased risk of developing these complications after transplantation. However, because studies have shown conflicting results, the use of these treatments remains subject of debate. In addition, their impact on the gut microbiota is not well studied. The aim of this study was to elucidate the dynamics of the microbiota during and after TGD and to compare these with the dynamics of SGD. In this prospective, observational, single center study fecal samples were longitudinally collected from 19 children eligible for allogenic HSCT (TGD, n=12; SGD, n=7), weekly during hospital admission and monthly after discharge. In addition, fecal samples were collected from 3 family stem cell donors. Fecal microbiota structure of patients and donors was determined by 16S rRNA gene amplicon sequencing. Microbiota richness and diversity markedly decreased during SGD and TGD and gradually increased after cessation of decontamination treatment. During SGD, gut microbiota composition was relatively stable and dominated by Bacteroides, whereas it showed high inter- and intraindividual variation and low Bacteroides abundance during TGD. In some children TGD allowed the genera Enterococcus and Streptococcus to thrive during treatment. A gut microbiota dominated by Bacteroides was associated with increased predicted activity of several metabolic processes. Comparing the microbiota of recipients and their donors indicated that receiving an SCT did not alter the patient's microbiota to become more similar to that of its donor. Overall, our findings indicate that SGD and TGD affect gut microbiota structure in a treatment-specific manner. Whether these treatments affect clinical outcomes via interference with the gut microbiota needs to be further elucidated. (C) 2019 American Society for Blood and Marrow Transplantation.
  • Lahtinen, Perttu; Mattila, Eero; Anttila, Veli-Jukka; Tillonen, Jyrki; Teittinen, Matti; Nevalainen, Pasi; Salminen, Seppo; Satokari, Reetta; Arkkila, Perttu (2017)
    Fecal microbiota transplantation (FMT) is effective in recurrent Clostridium difficile infection (rCDI). Knowledge of the safety and efficacy of FMT treatment in immune deficient patients is scarce. FMT has been suggested as a potential method for an increasing number of new indications besides rCDI. Among our FMT-treated rCDI patients, we reviewed those with major comorbidities: two human immunodeficiency virus patients, six haemodialysis patients, two kidney transplant patients, two liver transplant patients and a patient with chronic lymphatic leukaemia. We also reviewed those treated with FMT for indications other than rCDI: Salmonella carriage (two patients), trimethylaminuria (two patients), small intestinal bacterial overgrowth (SIBO; one patient), and lymphocytic colitis (one patient), as well as a common variable immunodeficiency patient with chronic norovirus infection and ESBL-producing Escherichia coli (E. coli) carriage. Of the thirteen rCDI patients treated with FMT, eleven cleared the CDI. The observed adverse events were not directly attributable to FMT. Concerning the special indications, both Salmonellas and ESBL-producing E. coli were eradicated. One trimethylaminuria patient and one SIBO-patient reported a reduction of symptoms. Three patients did not experience a benefit from FMT: chronic norovirus, lymphocytic colitis and the other fish malodour syndrome. There were no reported side effects in this group. FMT appeared to be safe and effective for immunocompromised patients with rCDI. FMT showed promise for the eradication of antibiotic-resistant bacteria, but further research is warranted.
  • Rossen, Noortje G.; MacDonald, John K.; de Vries, Elisabeth M.; D'Haens, Geert R.; de Vos, Willem M.; Zoetendal, Erwin G.; Ponsioen, Cyriel Y. (2015)
    AIM: To study the clinical efficacy and safety of Fecal microbiota transplantation (FMT). We systematically reviewed FMT used as clinical therapy. METHODS: We searched MEDLINE, EMBASE, the Cochrane Library and Conference proceedings from inception to July, 2013. Treatment effect of FMT was calculated as the percentage of patients who achieved clinical improvement per patient category, on an intention-to-treat basis. RESULTS: We included 45 studies; 34 on Clostridium difficile-infection (CDI), 7 on inflammatory bowel disease, 1 on metabolic syndrome, 1 on constipation, 1 on pouchitis and 1 on irritable bowel syndrome (IBS). In CDI 90% resolution of diarrhea in 33 case series (n = 867) was reported, and 94% resolution of diarrhea after repeated FMT in a randomized controlled trial (RCT) (n = 16). In ulcerative colitis (UC) remission rates of 0% to 68% were found (n = 106). In Crohn's disease (CD) (n = 6), no benefit was observed. In IBS, 70% improvement of symptoms was found (n = 13). 100% Reversal of symptoms was observed in constipation (n = 3). In pouchitis, none of the patients (n = 8) achieved remission. One RCT showed significant improvement of insulin sensitivity in metabolic syndrome (n = 10). Serious adverse events were rare. CONCLUSION: FMT is highly effective in CDI, and holds promise in UC. As for CD, chronic constipation, pouchitis and IBS data are too limited to draw conclusions. FMT increases insulin sensitivity in metabolic syndrome.
  • Tuominen, Heidi; Rautava, Jaana; Kero, Katja; Syrjänen, Stina; Collado, Maria C; Rautava, Samuli (BioMed Central, 2021)
    Abstract Background Aberrant microbiota composition has been linked to disease development at numerous anatomical sites. Microbiota changes in reaction to viral infections, such as human papillomavirus (HPV), have been investigated almost exclusively in the female reproductive tract. However, HPV infection may also affect male health by reducing semen quality and fertility. The aim of this study was to investigate whether present HPV DNA is associated with detectable changes in semen bacterial microbiota composition and diversity. Methods This study relied on stored semen samples from 31 fertile healthy men who participated in the Finnish family HPV Study during the years 1998–2001. DNA was extracted from semen with PCR template preparation kit. HPV was genotyped using Luminex-based Multimetrix® assay. Microbiota was analyzed from the V3-V4 region of 16S rDNA gene following sequencing on an Illumina MiSeq platform. All statistical analyses were performed with Calypso software version 8.84. Results HPV DNA was detected in 19.4% (6/31) of the semen samples. HPV status in the semen did not impact the α-diversity estimations, as measured by Chao1 and Shannon indices, nor ß-diversity. Nevertheless, HPV-positive semen samples exhibited differences in the taxonomic composition of the bacterial microbiota including higher abundances of Moraxellaceae (p = 0.028), Streptococcus (p = 0.0058) and Peptostreptococcus (p = 0.012) compared to HPV-negative semen samples. Conclusion HPV infection is associated with altered bacterial microbiota composition in semen, and this might have in impact to male health in general. As of present, it is unclear whether these changes result from HPV infection or whether altered bacterial microbiota increases susceptibility to HPV infection. More research is needed on viral-bacterial interactions in the male reproductive system.
  • Minard, Guillaume; Van Tran Van,; Tran, Florence Helene; Melaun, Christian; Klimpel, Sven; Koch, Lisa Katharina; Khanh Ly Huynh Kim,; Trang Huynh Thi Thuy,; Huu Tran Ngoc,; Potier, Patrick; Mavingui, Patrick; Moro, Claire Valiente (2017)
    Background: The Aedes (Stegomyia) albopictus subgroup includes 11 cryptic species of which Ae. albopictus is the most widely distributed. Its global expansion associated with a documented vector competence for several emerging arboviruses raise obvious concerns in the recently colonized regions. While several studies have provided important insights regarding medical importance of Ae. albopicus, the investigations of the other sibling species are scarce. In Asia, indigenous populations within the Ae. albopictus subgroup can be found in sympatry. In the present study, we aimed to describe and compare molecular, morphological and bacterial symbionts composition among sympatric individuals from the Ae. albopictus subgroup inhabiting a Vietnamese protected area. Results: Based on morphological structure of the cibarial armarture, we identified a cryptic species in the forest park at Bu Gia Map in the south-eastern region of Vietnam. Analysis of nuclear (ITS1-5.8S-ITS2) and mitochondrial (cox1, nad5) markers confirmed the divergence between the cryptic species and Ae. albopictus. Analysis of midgut bacterial microbiota revealed a strong similarity among the two species with a notable difference; contrary to Ae. albopictus, the cryptic species did not harbour any Wolbachia infection. Conclusions: These results could reflect either a recent invasion of Wolbachia in Ae. albopictus or alternatively a loss of this symbiont in the cryptic species. We argue that neglected species of the Ae. albopictus subgroup are of main importance in order to estimate variation of host-symbionts interactions across evolution.
  • Minard, Guillaume; Tran Van, Van; Tran, Florence H; Melaun, Christian; Klimpel, Sven; Koch, Lisa K; Ly Huynh Kim, Khanh; Huynh Thi Thuy, Trang; Tran Ngoc, Huu; Potier, Patrick; Mavingui, Patrick; Valiente Moro, Claire (BioMed Central, 2017)
    Abstract Background The Aedes (Stegomyia) albopictus subgroup includes 11 cryptic species of which Ae. albopictus is the most widely distributed. Its global expansion associated with a documented vector competence for several emerging arboviruses raise obvious concerns in the recently colonized regions. While several studies have provided important insights regarding medical importance of Ae. albopicus, the investigations of the other sibling species are scarce. In Asia, indigenous populations within the Ae. albopictus subgroup can be found in sympatry. In the present study, we aimed to describe and compare molecular, morphological and bacterial symbionts composition among sympatric individuals from the Ae. albopictus subgroup inhabiting a Vietnamese protected area. Results Based on morphological structure of the cibarial armarture, we identified a cryptic species in the forest park at Bù Gia Mập in the south-eastern region of Vietnam. Analysis of nuclear (ITS1-5.8S-ITS2) and mitochondrial (cox1, nad5) markers confirmed the divergence between the cryptic species and Ae. albopictus. Analysis of midgut bacterial microbiota revealed a strong similarity among the two species with a notable difference; contrary to Ae. albopictus, the cryptic species did not harbour any Wolbachia infection. Conclusions These results could reflect either a recent invasion of Wolbachia in Ae. albopictus or alternatively a loss of this symbiont in the cryptic species. We argue that neglected species of the Ae. albopictus subgroup are of main importance in order to estimate variation of host-symbionts interactions across evolution.
  • Haahtela, Tari; Hanski, Ilkka; Von Hertzen, Leena; Jousilahti, Pekka; Laatikainen, Tiina; Mäkelä, Mika J.; Puska, Pekka; Reijula, Kari; Saarinen, Kimmo; Vartiainen, Erkki; Vasankari, Tuula; Virtanen, Suvi (2017)
  • Viitasalo, Liisa; Kurppa, Kalle; Ashorn, Merja; Saavalainen, Päivi; Huhtala, Heini; Ashorn, Sara; Mäki, Markku; Ilus, Tuire; Kaukinen, Katri; Iltanen, Sari (2018)
    Background and AimsIn nonresponsive celiac disease (NRCD), the symptoms and duodenal damage persist despite a gluten-free diet. Celiac disease patients with persistent symptoms are found to have a dysbiotic microbiota. We thus hypothesized that increased seroreactivity to the serum gluten-sensitive microbial antibodies Saccharomyces cerevisiae (ASCA), Pseudomonas fluorescens-associated sequence (I2), and Bacteroides caccae TonB-linked outer membrane protein (OmpW) is associated with NRCD.MethodsASCA, I2 and OmpW were measured in 20 seronegative CD patients with persistent villous damage despite strict dietary treatment (NRCD group). Fifty-eight responsive patients served as CD controls (55 on gluten-free treatment) and 80 blood donors as non-CD controls.ResultsAt least one microbial marker was positive in 80% of NRCD patients, in 97% of untreated CD and 87% of treated CD patients, and in 44% of controls. NRCD patients had the highest frequency of ASCA positivity (65% vs 52, 20, and 0%, respectively) and also significantly higher ASCA IgA (median 14.5 U/ml) and IgG (32.5 U/ml) titers than treated CD patients (7.0 U/ml, 13.0 U/ml) and non-CD controls (4.5 U/ml, 5.8 U/ml). The frequencies of I2 and OmpW were lower in NRCD than in untreated CD (65% and 45% vs 86% and 59%, respectively), and I2 titers were higher in NRCD (median absorbance 0.76) and untreated (1.0) and treated (0.83) CD than controls (0.32). OmpW was elevated in untreated (1.1) and treated (0.94) CD patients compared with controls (0.79).ConclusionsSeropositivity and high titers of ASCA are associated with NRCD and might serve as an additional follow-up tool in CD.
  • Siljander, Heli; Honkanen, Jarno; Knip, Mikael (2019)
    The steep increase in the incidence of type 1 diabetes (T1D), in the Western world after World War II, cannot be explained solely by genetic factors but implies that this rise must be due to crucial interactions between predisposing genes and environmental changes. Three parallel phenomena in early childhood – the dynamic development of the immune system, maturation of the gut microbiome, and the appearance of the first T1D-associated autoantibodies – raise the question whether these phenomena might reflect causative relationships. Plenty of novel data on the role of the microbiome in the development of T1D has been published over recent years and this review summarizes recent findings regarding the associations between islet autoimmunity, T1D, and the intestinal microbiota.
  • Enroth, Johannes (2017)
  • Knip, Mikael; Honkanen, Jarno (2017)
    Purpose of Review The purpose of this review is to summarize potential modulations of the intestinal microbiome aimed at preventing or delaying progression to overt type 1 diabetes in the light of recently identified perturbations of the gut microbiota associated with the development of type 1 diabetes. Recent Findings Accumulated data suggest that the gut microbiota is involved at two different steps in the evolution of type 1 diabetes. At the first step, the intestinal tract is colonized by a microbial community unable to provide an adequate education of the immune system. As a consequence, the infant acquires susceptibility to immune-mediated diseases, type 1 diabetes included. At the other step, the young child seroconverts to positivity for diabetes-associated autoantibodies. This is preceded or accompanied by a decrease in the diversity of the intestinal microbiota and an increased abundance of Bacteroides species. These changes will affect the disease process promoting progression toward overt type 1 diabetes. Summary By providing specific probiotics, one can affect the colonization of the intestinal tract in the newborn infant or strengthen the immune education in early life. Human milk oligosaccharides function as nutrients for "healthy" bacteria. Dietary interventions applying modified starches can influence the numbers and activities of both autoreactive and regulatory T cells and provide protection against autoimmune diabetes in non-obese diabetic mice. Modulation of the intestinal microbiome holds the promise of effective protection against human type 1 diabetes.
  • van der Ark, Kees C. H.; van Heck, Ruben G. A.; Dos Santos, Vitor A. P. Martins; Belzer, Clara; de Vos, Willem M. (2017)
    The human gut is colonized with a myriad of microbes, with substantial interpersonal variation. This complex ecosystem is an integral part of the gastrointestinal tract and plays a major role in the maintenance of homeostasis. Its dysfunction has been correlated to a wide array of diseases, but the understanding of causal mechanisms is hampered by the limited amount of cultured microbes, poor understanding of phenotypes, and the limited knowledge about interspecies interactions. Genome-scale metabolic models (GEMs) have been used in many different fields, ranging from metabolic engineering to the prediction of interspecies interactions. We provide showcase examples for the application of GEMs for gut microbes and focus on (i) the prediction of minimal, synthetic, or defined media; (ii) the prediction of possible functions and phenotypes; and (iii) the prediction of interspecies interactions. All three applications are key in understanding the role of individual species in the gut ecosystem as well as the role of the microbiota as a whole. Using GEMs in the described fashions has led to designs of minimal growth media, an increased understanding of microbial phenotypes and their influence on the host immune system, and dietary interventions to improve human health. Ultimately, an increased understanding of the gut ecosystem will enable targeted interventions in gut microbial composition to restore homeostasis and appropriate host-microbe crosstalk.