Browsing by Subject "NANOWIRES"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Reischl, Bernhard; Rohl, Andrew L.; Kuronen, Antti; Nordlund, Kai (2017)
    Mechanical properties of nanoscale objects can be measured with an atomic force microscope (AFM) tip. However, the continuum models typically used to relate the force measured at a certain indentation depth to quantities such as the elastic modulus, may not be valid at such small scales, where the details of atomistic processes need to be taken into account. On the other hand, molecular dynamics (MD) simulations of nanoindentation, which can offer understanding at an atomistic level, are often performed on systems much smaller than the ones studied experimentally. Here, we present large scale MD simulations of the nanoindentation of single crystal and penta-twinned gold nanorod samples on a silicon substrate, with a spherical diamond AFM tip apex. Both the sample and tip sizes and geometries match commercially available products, potentially linking simulation and experiment. Different deformation mechanisms, involving the creation, migration and annihilation of dislocations are observed depending on the nanorod crystallographic structure and orientation. Using the Oliver-Pharr method, the Young's moduli of the (100) terminated and (110) terminated single crystal nanorods, and the penta-twinned nanorod, have been determined to be 103 +/- 2, 140 +/- 4 and 108 +/- 2 GPa, respectively, which is in good agreement with bending experiments performed on nanowires.
  • Herranen, Touko; Laurson, Lasse (2017)
    We study field-driven magnetic domain wall dynamics in garnet strips by large-scale three-dimensional micromagnetic simulations. The domain wall propagation velocity as a function of the applied field exhibits a low-field linear part terminated by a sudden velocity drop at a threshold field magnitude, related to the onset of excitations of internal degrees of freedom of the domain wall magnetization. By considering a wide range of strip thicknesses from 30 nm to 1.89 mu m, we find a nonmonotonic thickness dependence of the threshold field for the onset of this instability, proceeding via nucleation and propagation of Bloch lines within the domain wall. We identify a critical strip thickness above which the velocity drop is due to nucleation of horizontal Bloch lines, while for thinner strips and depending on the boundary conditions employed, either generation of vertical Bloch lines, or close-to-uniform precession of the domain wall internal magnetization takes place. For strips of intermediate thicknesses, the vertical Bloch lines assume a deformed structure due to demagnetizing fields at the strip surfaces, breaking the symmetry between the top and bottom faces of the strip, and resulting in circulating Bloch line dynamics along the perimeter of the domain wall.
  • Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupre, Luc; Van Waeyenberge, Bartel (2016)
    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line-like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.
  • Jäppinen, Luke; Jalkanen, Tero; Sieber, Brigitte; Addad, Ahmed; Heinonen, Markku; Kukk, Edwin; Radevici, Ivan; Paturi, Petriina; Peurla, Markus; Shahbazi, Mohammad-Ali; Santos, Hélder A.; Boukherroub, Rabah; Santos, Hellen; Lastusaari, Mika; Salonen, Jarno (2016)
    Zinc oxide (ZnO) nanorods were manufactured using the aqueous chemical growth (ACG) method, and the effect of thermal acetylene treatment on their morphology, chemical composition, and optical properties was investigated. Changes in the elemental content of the treated rods were found to be different than in previous reports, possibly due to the different defect concentrations in the samples, highlighting the importance of synthesis method selection for the process. Acetylene treatment resulted in a significant improvement of the ultraviolet photoluminescence of the rods. The greatest increase in emission intensity was recorded on ZnO rods treated at the temperature of 825 degrees C. The findings imply that the changes brought on by the treatment are limited to the surface of the ZnO rods.
  • Estevez, Virginia; Laurson, Lasse (2017)
    We study vortex domain wall dynamics in wide permalloy strips driven by applied magnetic fields and spin-polarized electric currents. As recently reported [V. Estevez and L. Laurson, Phys. Rev. B 93, 064403 (2016)], for sufficiently wide strips and above a threshold field, periodic dynamics of the vortex core are localized in the vicinity of one of the strip edges, and the velocity drop typically observed for narrow strips is replaced by a high-velocity plateau. Here, we analyze this behavior in more detail by means of micromagnetic simulations. We show that the high-velocity plateau originates from a repeated double switching of the magnetic vortex core, underlying the periodic vortex core dynamics in the vicinity of the strip edge, i.e., the "attraction-repulsion" effect. We also discuss the corresponding dynamics driven by spin-polarized currents, as well as the effect of including quenched random structural disorder to the system.
  • Jansson, V.; Baibuz, E.; Djurabekova, F. (2016)
    Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the <110 > crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 mu s at room temperature. Moreover, the nanotips built up along the <110 > crystallographic directions were found to be significantly more stable than those oriented in the <100 > or <111 > crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.