Sort by: Order: Results:

Now showing items 1-3 of 3
  • Remzső, Gábor; Németh, János; Varga, Viktória; Kovács, Viktória; Tóth-Szűki, Valéria; Kaila, Kai; Voipio, Juha; Domoki, Ferenc (2020)
    Brain interstitial pH (pHbrain) alterations play an important role in the mechanisms of neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia. The newborn pig is an established large animal model to study HIE, however, only limited information on pHbrain alterations is available in this species and it is restricted to experimental perinatal asphyxia (PA) and the immediate reventilation. Therefore, we sought to determine pHbrain over the first 24h of HIE development in piglets. Anaesthetized, ventilated newborn pigs (n = 16) were instrumented to control major physiological parameters. pHbrain was determined in the parietal cortex using a pH-selective microelectrode. PA was induced by ventilation with a gas mixture containing 6%O2-20%CO2 for 20 min, followed by reventilation with air for 24h, then the brains were processed for histopathology assessment. The core temperature was maintained unchanged during PA (38.4±0.1 vs 38.3±0.1°C, at baseline versus the end of PA, respectively; mean±SEM). In the arterial blood, PA resulted in severe hypoxia (PaO2: 65±4 vs 23±1*mmHg, *p
  • Nevalainen, Päivi; Marchi, Viviana; Metsäranta, Marjo; Lönnqvist, Tuula; Toiviainen-Salo, Sanna; Vanhatalo, Sampsa; Lauronen, Leena (2017)
    Objective: To evaluate the added value of somatosensory (SEPs) and visual evoked potentials (VEPs) recorded simultaneously with routine EEG in early outcome prediction of newborns with hypoxicischemic encephalopathy under modern intensive care. Methods: We simultaneously recorded multichannel EEG, median nerve SEPs, and flash VEPs during the first few postnatal days in 50 term newborns with hypoxic-ischemic encephalopathy. EEG background was scored into five grades and the worst two grades were considered to indicate poor cerebral recovery. Evoked potentials were classified as absent or present. Clinical outcome was determined from the medical records at a median age of 21 months. Unfavorable outcome included cerebral palsy, severe mental retardation, severe epilepsy, or death. Results: The accuracy of outcome prediction was 98% with SEPs compared to 90% with EEG. EEG alone always predicted unfavorable outcome when it was inactive (n = 9), and favorable outcome when it was normal or only mildly abnormal (n = 17). However, newborns with moderate or severe EEG background abnormality could have either favorable or unfavorable outcome, which was correctly predicted by SEP in all but one newborn (accuracy in this subgroup 96%). Absent VEPs were always associated with an inactive EEG, and an unfavorable outcome. However, presence of VEPs did not guarantee a favorable outcome. Conclusions: SEPs accurately predict clinical outcomes in newborns with hypoxic-ischemic encephalopathy and improve the EEG-based prediction particularly in those newborns with severely or moderately abnormal EEG findings. Significance: SEPs should be added to routine EEG recordings for early bedside assessment of newborns with hypoxic-ischemic encephalopathy. (C) 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
  • Kivi, Anna; Metsäranta, Marjo; Toiviainen-Salo, Sanna; Vanhatalo, Sampsa; Haataja, Leena (2022)
    Aim To characterise the spectrum of findings in sequential neurological examinations, general movements (GM) assessment and magnetic resonance imaging (MRI) of infants with perinatal asphyxia. Methods The prospective cohort study of term infants with perinatal asphyxia treated at Helsinki University Hospital's neonatal units in 2016-2020 used Hammersmith Neonatal Neurological Examination (HNNE) and brain MRI at 2 weeks and Hammersmith Infant Neurological Examination (HINE) and GM assessment at 3 months of age. Results Analysis included 50 infants: 33 displaying perinatal asphyxia without hypoxic-ischaemic encephalopathy (HIE), seven with HIE1 and 10 with HIE2. Of the infants with atypical HNNE findings, 24/25 perinatal asphyxia without HIE cases, 5/6 HIE1 cases and all 10 HIE2 cases showed atypical findings in the HINE. The HINE identified atypical spontaneous movements significantly more often in infants with white matter T2 hyperintensity. Conclusion In this cohort, most infants with perinatal asphyxia, with or without HIE, presented atypical neurological findings in sequential examinations. The profile of neurological findings for children with perinatal asphyxia without HIE resembled that of children with HIE. White matter T2 hyperintensity was associated with atypical spontaneous movements in the HINE and was a frequent MRI finding also in perinatal asphyxia without HIE.