Sort by: Order: Results:

Now showing items 1-5 of 5
  • Turconi, Giorgio; Kopra, Jaakko; Võikar, Vootele; Kulesskaya, Natalia; Vilenius, Carolina; Piepponen, T. Petteri; Andressoo, Jaan-Olle (2020)
    Glial cell line-derived neurotrophic factor (GDNF) supports function and survival of dopamine neurons that degenerate in Parkinson's disease (PD). Ectopic delivery of GDNF in clinical trials to treat PD is safe but lacks significant therapeutic effect. In pre-clinical models, ectopic GDNF is effective but causes adverse effects, including downregulation of tyrosine hydroxylase, only a transient boost in dopamine metabolism, aberrant neuronal sprouting, and hyperactivity. Hindering development of GDNF mimetic increased signaling via GDNF receptor RET by activating mutations results in cancer. Safe and effective mode of action must be defined first in animal models to develop successful GDNF-based therapies. Previously we showed that about a 2-fold increase in endogenous GDNF expression is safe and results in increased motor and dopaminergic function and protection in a PD model in young animals. Recently, similar results were reported using a novel Gdnf mRNA-targeting strategy. Next, it is important to establish the safety of a long-term increase in endogenous GDNF expression. We report behavioral, dopamine system, and cancer analysis of five cohorts of aged mice with a 2-fold increase in endogenous GDNF. We found a sustained increase in dopamine levels, improvement in motor learning, and no side effects or cancer. These results support the rationale for further development of endogenous GDNF-based treatments and GDNF mimetic.
  • Voutilainen, Merja H.; De Lorenzo, Francesca; Stepanova, Polina; Bäck, Susanne; Pulkkila, Päivi; Pörsti, Eeva; Saarma, Mart; Männistö, Pekka T.; Tuominen, Raimo K. (2017)
    Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing alpha-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 mu g). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5 mu g) and GDNF (1 mu g) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2 alpha).
  • Barker, Roger A.; Björklund, Anders; Gash, Don M.; Whone, Alan; Laar, Amber Van; Kordower, Jeffrey H.; Bankiewicz, Krystof; Kieburtz, Karl; Saarma, Mart; Booms, Sigrid; Huttunen, Henri J.; Kells, Adrian P.; Fiandaca, Massimo S.; Stoessl, A. Jon; Eidelberg, David; Federoff, Howard; Voutilainen, Merja H.; Dexter, David T.; Eberling, Jamie; Brundin, Patrik; Isaacs, Lyndsey; Mursaleen, Leah; Bresolin, Eros; Carroll, Camille; Coles, Alasdair; Fiske, Brian; Matthews, Helen; Lungu, Codrin; Wyse, Richard K.; Stott, Simon; Lang, Anthony E. (2020)
    The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.
  • Jaumotte, Juliann D.; Saarma, Mart; Zigmond, Michael J. (2021)
    Parkinson's disease is associated with the loss of dopamine (DA) neurons in ventral mesencephalon. We have previously reported that no single neurotrophic factor we tested protected DA neurons from the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP+) in dissociated cultures isolated from the P0 rat substantia nigra, but that a combination of five neurotrophic factors was protective. We now report that cerebral DA neurotrophic factor (CDNF) and a variant of neurturin (NRTN), N4, were also not protective when provided alone but were protective when added together. In cultures isolated from the substantia nigra, MPP+ (10 mu M) decreased tyrosine hydroxylase-positive cells to 41.7 +/- 5.4% of vehicle control. Although treatment of cultures with 100 ng/ml of either CDNF or N4 individually before and after toxin exposure did not significantly increase survival in MPP+-treated cultures, when the two trophic factors were added together at 100 ng/ml each, survival of cells was increased 28.2 +/- 6.1% above the effect of MPP+ alone. In cultures isolated from the ventral tegmental area, another DA rich area, a higher dose of MPP+ (1 mM) was required to produce an EC50 in TH-positive cells but, as in the substantia nigra, only the combination of CDNF and N4 (100 ng/ml each) was successful at increasing the survival of these cells compared to MPP+ alone (by 22.5 +/- 3.5%). These data support previous findings that CDNF and N4 may be of therapeutic value for treatment of PD, but suggest that they may need to be administered together.
  • Jmaeff, Sean; Sidorova, Yulia; Lippiatt, Hayley; Barcelona, Pablo F.; Nedev, Hinyu; Saragovi, Lucia M.; Hancock, Mark A.; Saarma, Mart; Saragovi, H. Uri (2020)
    Glial cell line-derived neurotrophic factor (GDNF) binds the GFR alpha 1 receptor, and the GDNF-GFR alpha 1 complex binds to and activates the transmembrane RET tyrosine kinase to signal through intracellular Akt/Erk pathways. To dissect the GDNF-GFR alpha 1-RET signaling complex, agents that bind and activate RET directly and independently of GFR alpha 1 expression are valuable tools. In a focused naphthalenesulfonic acid library from the National Cancer Institute database, we identified small molecules that are genuine ligands binding to the RET extracellular domain. These ligands activate RET tyrosine kinase and afford trophic signals irrespective of GFR alpha 1 coexpression. However, RET activation by these ligands is constrained by GFR alpha 1, likely via an allosteric mechanism that can be overcome by increasing RET ligand concentration. In a mouse model of retinitis pigmentosa, monotherapy with a small-molecule RET agonist activates survival signals and reduces neuronal death significantly better than GDNF, suggesting therapeutic potential. SIGNIFICANCE STATEMENT A genuine ligand of RET receptor ectodomain was identified, which acts as an agonist. Binding and agonism are independent of a coreceptor glial cell line-derived neurotrophic factor family receptor a, which is required by the natural growth factor glial cell line-derived neurotrophic factor, and are selective for cells expressing RET. The lead agent protects neurons from death in vivo. This work validates RET receptor as a druggable therapeutic target and provides for potential leads to evaluate in neurodegenerative states. We also report problems that arise when screening chemical libraries.