Browsing by Subject "NEUROTROPHIC FACTOR"

Sort by: Order: Results:

Now showing items 1-20 of 58
  • Sidorova, Yulia A.; Bespalov, Maxim M.; Wong, Agnes W.; Kambur, Oleg; Jokinen, Viljami; Lilius, Tuomas O.; Suleymanova, Ilida; Karelson, Gunnar; Rauhala, Pekka V.; Karelson, Mati; Osborne, Peregrine B.; Keast, Janet R.; Kalso, Eija A.; Saarma, Mart (2017)
    Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimulate regeneration after nerve damage. Two candidate targets are glial cell line-derived neurotrophic factor (GDNF) and artemin (ARTN), as these GDNF family ligands (GFLs) show efficacy in animal models of neuropathic pain (Boucher et al., 2000; Gardell et al., 2003: Wang et al., 2008, 2014). As these protein ligands have poor drug-like properties and are expensive to produce for clinical use, we screened 18,400 drug-like compounds to develop small molecules that act similarly to GFLs (GDNF mimetics). This screening identified BT13 as a compound that selectively targeted GFL receptor RET to activate downstream signaling cascades. BT13 was similar to NGF and ARTN in selectively promoting neurite outgrowth from the peptidergic class of adult sensory neurons in culture, but was opposite to ARTN in causing neurite elongation without affecting initiation. When administered after spinal nerve ligation in a rat model of neuropathic pain, 20 and 25 mg/kg of BT13 decreased mechanical hypersensitivity and normalized expression of sensory neuron markers in dorsal root ganglia. In control rats, BT13 had no effect on baseline mechanical or thermal sensitivity, motor coordination, or weight gain. Thus, small molecule BT13 selectively activates RET and offers opportunities for developing novel disease-modifying medications to treat neuropathic pain.
  • Ardashov, Oleg V.; Pavlova, Alla V.; Mahato, Arun Kumar; Sidorova, Yulia; Morozova, Ekaterina A.; Korchagina, Dina V.; Salnikov, Georgi E.; Genaev, Alexander M.; Patrusheva, Oksana S.; Li-Zhulanov, Nikolay S.; Tolstikova, Tat'yana G.; Volcho, Konstantin P.; Salakhutdinov, Nariman. F. (2019)
    We previously showed that monoterpenoid (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol 1 alleviates motor manifestations of Parkinson's disease in animal models. In the present study, we designed and synthesized monoepoxides of (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol 1 and evaluated their biological activity in the MPTP mouse model of Parkinson's disease. We also assessed the ability of these compounds to penetrate the blood-brain barrier (BBB). According to these data, we chose epoxide 4, which potently restored the locomotor activity in MPTP-treated mice and efficiently penetrated the BBB, to further explore its potential mechanism of action. Epoxide 4 was found to robustly promote the survival of cultured dopamine neurons, protect dopamine neurons against toxin-induced degeneration, and trigger the mitogen-activated protein kinase (MAPK) signaling cascade in cells of neuronal origin. Meanwhile, neither the survival-promoting effect nor MAPK activation was observed in non-neuronal cells treated with epoxide 4. In the MPTP mouse model of Parkinson's disease, compound 4 increased the density of dopamine neuron fibers in the striatum, which can highlight its potential to stimulate striatal reinnervation and thus halt disease progression. Taken together, these data indicate that epoxide 4 can be a promising compound for further development, not only as a symptomatic but also as a neuroprotective and neurorestorative drug for Parkinson's disease.
  • Albert, Katrina; Voutilainen, Merja H.; Domanskyi, Andrii; Airavaara, Mikko (2017)
    Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson's disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson's disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson's disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson's disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV--synuclein (-syn) to target substantia nigra dopamine neurons to produce an -syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.
  • Ribeiro, Deidiane Elisa; Casarotto, Plinio Cabrera; Júnior, Ailton Spiacci; Fernandes, Gabriel Gripp; Pinheiro, Lucas César; Tanus- Santos, José Eduardo; Zangrossi Jr, Hélio; Silveira Guimarães, Francisco; Lourenço Joca, Samia Regiane; Biojone, Caroline (2019)
    Nitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated response, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG. We observed that the repeated (7 days), but not acute (1 day), systemic administration of the NOS inhibitor aminoguanidine (AMG; 15 mg/kg/day) increased the latency to escape from the open arm of the elevated T-maze (ETM) and inhibited the number of jumps in hypoxia-induced escape reaction in rats, suggesting a panicolytic-like effect. Repeated, but not acute, AMG administration (15 mg/kg) also decreased nitrite levels and increased TRKB phosphorylation at residues Y706/7 in the dPAG. Notwithstanding the lack of AMG effect on total BDNF levels in this structure, the microinjection of the TRK antagonist K252a into the dPAG blocked the anti-escape effect of this drug in the ETM. Taken together our data suggest that the inhibition of NO production by AMG increases the levels of pTRKB, which is required for the panicolytic-like effect observed.
  • Sidorova, Yulia A.; Saarma, Mart (2020)
    Growth factors (GFs) hold considerable promise for disease modification in neurodegenerative disorders because they can protect and restore degenerating neurons and also enhance their functional activity. However, extensive efforts applied to utilize their therapeutic potential in humans have achieved limited success so far. Multiple clinical trials with GFs were performed in Parkinson's disease (PD) patients, in whom diagnostic symptoms of the disease are caused by advanced degeneration of nigrostriatal dopamine neurons (DNs), but the results of these trials are controversial. This review discusses recent developments in the field of therapeutic use of GFs, problems and obstacles related to this use, suggests the ways to overcome these issues, and alternative approaches that can be used to utilize the potential of GFs in PD management.
  • Pakarinen, Emmi; Lindholm, Paivi; Saarma, Mart; Lindahl, Maria (2022)
    Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) display cytoprotective effects in animal models of neurodegenerative diseases. These endoplasmic reticulum (ER)-resident proteins belong to the same protein family and function as ER stress regulators. The relationship between CDNF and MANF function, as well as their capability for functional compensation, is unknown. We aimed to investigate these questions by generating mice lacking both CDNF and MANF. Results showed that CDNF-deficient Manf(-/-) mice presented the same phenotypes of growth defect and diabetes as Manf(-/-) mice. In the muscle, CDNF deficiency resulted in increased activation of unfolded protein response (UPR), which was aggravated when MANF was ablated. In the brain, the combined loss of CDNF and MANF did not exacerbate UPR activation caused by the loss of MANF alone. Consequently, CDNF and MANF deficiency in the brain did not cause degeneration of dopamine neurons. In conclusion, CDNF and MANF present functional redundancy in the muscle, but not in the other tissues examined here. Thus, they regulate the UPR in a tissue-specific manner.
  • Lesnikova, Angelina; Casarotto, Plinio; Fred, Senem Merve; Voipio, Mikko; Winkel, Frederike; Stenizeig, Anna; Antila, Hanna; Umemori, Juzoh; Biojone, Caroline; Castrén, Eero (2021)
    Perineuronal nets (PNNs) are an extracellular matrix structure rich in chondroitin sulfate proteoglycans (CSPGs), which preferentially encase parvalbumin-containing (PV+) interneurons. PNNs restrict cortical network plasticity but the molecular mechanisms involved are unclear. We found that reactivation of ocular dominance plasticity in the adult visual cortex induced by chondroitinase ABC (chABC)-mediated PNN removal requires intact signaling by the neurotrophin receptor TRKB in PV+ neurons. Additionally, we demonstrate that chABC increases TRKB phosphorylation (pTRKB), while PNN component aggrecan attenuates brain-derived neurotrophic factor (BDNF)-induced pTRKB in cortical neurons in culture. We further found that protein tyrosine phosphatase sigma (PTP sigma, PTPRS), receptor for CSPGs, interacts with TRKB and restricts TRKB phosphorylation. PTP sigma deletion increases phosphorylation of TRKB in vitro and in vivo in male and female mice, and juvenile-like plasticity is retained in the visual cortex of adult PTP sigma-deficient mice (PTP sigma(+/-)). The antidepressant drug fluoxetine, which is known to promote TRKB phosphorylation and reopen critical period-like plasticity in the adult brain, disrupts the interaction between TRKB and PTP sigma by binding to the transmembrane domain of TRKB. We propose that both chABC and fluoxetine reopen critical period-like plasticity in the adult visual cortex by promoting TRKB signaling in PV+ neurons through inhibition of TRKB dephosphorylation by the PTP sigma-CSPG complex.
  • Huotarinen, Antti; Penttinen, Anna-Maija; Bäck, Susanne; Voutilainen, Merja H.; Julku, Ulrika; Piepponen, T. Petteri; Männistö, Pekka T.; Saarma, Mart; Tuominen, Raimo; Laakso, Aki; Airavaara, Mikko (2018)
    Several neurotrophic factors ( NTF) are shown to be neuroprotective and neurorestorative in pre-clinical animal models for Parkinson's disease ( PD), particularly in models where striatal dopamine neuron innervation partially exists. The results of clinical trials on late-stage patients have been modest. Subthalamic deep brain stimulation ( STN DBS) is a proven treatment for a selected group of advanced PD patients. The cerebral dopamine neurotrophic factor ( CDNF) is a promising therapeutic protein, but its effects in animal models of late-stage PD have remained under-researched. The interactions of NTF and STN DBS treatments have not been studied before. We found that a nigral CDNF protein alone had only a marginal effect on the behavioral deficits in a late-stage hemiparkinsonian rat model ( 6-OHDA MFB). However, CDNF improved the effect of acute STN DBS on front limb use asymmetry at 2 and 3 weeks after CDNF injection. STN lesion-modeling chronic stimulation-had an additive effect in reducing front limb use in the cylinder test and apomorphine-induced rotation. The combination of CDNF and acute STN DBS had a favorable effect on striatal tyrosine hydroxylase. This study presents a novel additive beneficial effect of NTF and STN DBS, which might be explained by the interaction of DBS-induced endogenous NTFs and exogenously injected CDNF. SNpc can be reached via similar trajectories used in clinical STN DBS, and this interaction is an important area for future studies. (C) 2018 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license (
  • Kopra, Jaakko; Villarta-Aguilera, Marian; Savolainen, Mari; Weingerl, Samo; Myohänen, Timo T.; Rannanpää, Saara; Salvatore, Michael E.; Andressoo, Jaan-Olle; Piepponen, T. Petteri (2018)
    Addictive drugs enhance dopamine release in the striatum, which can lead to compulsive drug-seeking after repeated exposure. Glial cell line-derived neurotrophic factor (GDNF) is an important regulator of midbrain dopamine neurons, and may play a mechanistic role in addiction-related behaviors. To elucidate the components of GDNF-signaling that contribute to addiction-related behaviors of place preference and its extinction, we utilized two genetically modified GDNF mouse models in an amphetamine induced conditioned place preference (CPP) paradigm and evaluated how the behavioral findings correlate with dopamine signaling in the dorsal and ventral striatum. We utilized two knock-in mouse strains to delineate contributions of GDNF and Ret signaling using MEN2B mice (constitutively active GDNF receptor Ret), and GDNF hypermorphic mice (enhanced endogenous GDNF expression). The duration of amphetamine-induced CPP was greatly enhanced in MEN2B mice, but not in the GDNF hypermorphic mice. The enhanced duration of CPP was correlated with increased tyrosine hydroxylase (TH) expression and dopamine content in the ventral striatum. Together, our results suggest that downstream components of GDNF signaling, in this case Ret, may mediate persistent drug-seeking behavior through increased TH expression and dopamine levels in the mesolimbic dopamine neurons. (C) 2017 Elsevier Ltd. All rights reserved.
  • Lindholm, Dan; Mäkelä, Johanna; Di Liberto, Valentina; Mudo, Giuseppa; Belluardo, Natale; Eriksson-Rosenberg, Ove; Saarma, Mart (2016)
    Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
  • Runeberg-Roos, Pia; Piccinini, Elisa; Penttinen, Anna-Maija; Matlik, Kert; Heikkinen, Hanna; Kuure, Satu; Bespalov, Maxim M.; Peranen, Johan; Garea-Rodriguez, Enrique; Fuchs, Eberhard; Airavaara, Mikko; Kalkkinen, Nisse; Penn, Richard; Saarma, Mart (2016)
    In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue. (C) 2016 Elsevier Inc. All rights reserved.
  • Li, Hao; Jakobson, Madis; Ola, Roxana; Gui, Yujuan; Kumar, Anmol; Sipilä, Petra; Sariola, Hannu; Kuure, Satu; Andressoo, Jaan-Olle (2019)
    Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cellline derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3' untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF's effects on progenitors. Moreover, Gdnf(hyper) mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3' UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.
  • Uutela, Marko; Lindholm, Jesse; Rantamaki, Tomi; Umemori, Juzoh; Hunter, Kerri; Voikar, Vootele; Castren, Maija L. (2014)
  • Walkowicz, Lucyna; Kijak, Ewelina; Krzeptowski, Wojciech; Gorska-Andrzejak, Jolanta; Stratoulias, Vassilis; Woznicka, Olga; Chwastek, Elzbieta; Heino, Tapio I.; Pyza, Elzbieta M. (2017)
    In Drosophila melanogaster, mesencephalic astrocyte-derived neurotrophic factor(DmMANF) is an evolutionarily conserved ortholog of mammalian MANF and cerebral dopamine neurotrophic factor (CDNF), which have been shown to promote the survival of dopaminergic neurons in the brain. We observed especially high levels of DmMANF in the visual system of Drosophil a, particularly in the first optic neuropil (lamina). In the lamina, DmMANF was found in glial cells (surface and epithelial glia), photoreceptors and interneurons. Interestingly, silencing of DmMANF in all neurons or specifically in photoreceptors or L2 interneurons had no impact on the structure of the visual system. However, downregulation of DmMANF in glial cells induced degeneration of the lamina. Remarkably, this degeneration in the form of holes and/or tightly packed membranes was observed only in the lamina epithelial glial cells. Those membranes seem to originate from the endoplasmic reticulum, which forms autophagosome membranes. Moreover, capitate projections, the epithelial glia invaginations into photoreceptor terminals that are involved in recycling of the photoreceptor neurotransmitter histamine, were less numerous after DmMANF silencing either in neurons or glial cells. The distribution of the alpha subunit of Na+/K+-ATPase protein in the lamina cell membranes was also changed. At the behavioral level, silencing of DmMANF either in neurons or glial cells affected the daily activity/sleep pattern, and flies showed less activity during the day but higher activity during the night than did controls. In the case of silencing in glia, the lifespan of flies was also shortened. The obtained results showed that DmMANF regulates many functions in the brain, particularly those dependent on glial cells.
  • Diniz, Cassiano R. A. F.; Biojone, Caroline; Joca, Samia R. L.; Rantamäki, Tomi; Castren, Eero; Guimaraes, Francisco S.; Casarotto, Plinio C. (2019)
    Background. Administration of anandamide (AEA) or 2-arachidonoylglycerol (2AG) induces CB1 coupling and activation of TRKB receptors, regulating the neuronal migration and maturation in the developing cortex. However, at higher concentrations AEA also engages vanilloid receptor TRPV1, usually with opposed consequences on behavior. Methods and Results. Using primary cell cultures from the cortex of rat embryos (E18) we determined the effects of AEA on phosphorylated TRKB (pTRK). We observed that AEA (at 100 and 200 nM) induced a significant increase in pTRK levels. Such effect of AEA at 100 nM was blocked by pretreatment with the CBI antagonist AM251 (200 nM) and, at the higher concentration of 200 nM by the TRPV1 antagonist capsazepine (200 nM), but mildly attenuated by AM251. Interestingly, the effect of AEA or capsaicin (a TRPV1 agonist, also at 200 nM) on pTRK was blocked by TRKB.Fc (a soluble form of TRKB able to bind BDNF) or capsazepine, suggesting a mechanism dependent on BDNF release. Using the marble-burying test (MBT) in mice, we observed that the local administration of ACEA (a CBI agonist) into the prelimbic region of prefrontal cortex (PL-PFC) was sufficient to reduce the burying behavior, while capsaicin or BDNF exerted the opposite effect, increasing the number of buried marbles. In addition, both ACEA and capsaicin effects were blocked by previous administration of k252a (an antagonist of TRK receptors) into PL-PFC. The effect of systemically injected CB1 agonist WIN55,212-2 was blocked by previous administration of k252a. We also observed a partial colocalization of CBI /TRPV1 /TRKB in the PL-PFC, and the localization of TRPV1 in CaMK2+ cells. Conclusion. Taken together, our data indicate that anandamide engages a coordinated activation of TRKB, via CB1 and TRPV1. Thus, acting upon CBI. and TRPV1, AEA could regulate the TRKB-dependent plasticity in both pre- and postsynaptic compartments.
  • Guirado, Ramon; La Terra, Danilo; Bourguignon, Mathieu; Carceller, Hector; Umemori, Juzoh; Sipilä, Pia; Nacher, Juan; Castren, Eero (2016)
    Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of interneurons but also has been shown to play a role in the onset of critical periods during development. We have here used ocular dominance plasticity in the mouse visual cortex as a model to investigate whether removal of PSA might influence the Fluoxetine-induced plasticity. We demonstrate that PSA removal in the adult visual cortex alters neither the baseline ocular dominance, nor the fluoxetine-induced shift in the ocular dominance. We also show that both chronic Fluoxetine treatment and PSA removal independently increase the basal FosB expression in parvalbumin (PV) interneurons in the primary visual cortex. Therefore, our data suggest that although PSA-NCAM regulates inhibitory circuitry, it is not required for the reactivation of juvenile like plasticity triggered by Fluoxetine.
  • Diniz, C. R. A. F.; Becari, C.; Lesnikova, A.; Biojone, C.; Salgado, M. C. O.; Salgado, H. C.; Resstel, L. B. M.; Guimaraes, F. S.; Castren, E.; Casarotto, P. C.; Joca, S. R. L. (2018)
    Several pieces of evidence indicate that elastase-2 (ELA2; chymotrypsin-like ELA2) is an alternative pathway to the generation of angiotensin II (ANGII). Elastase-2 knockout mice (ELA2KO) exhibit alterations in the arterial blood pressure and heart rate. However, there is no data on the behavioral consequences of ELA2 deletion. In this study, we addressed this question, submitting ELA2KO and wild-type (WT) mice to several models sensitive to anxiety- and depression-like, memory, and repetitive behaviors. Our data indicates a higher incidence of barbering behavior in ELA2KO compared to WT, as well as an anxiogenic phenotype, evaluated in the elevated plus maze (EPM). While a decrease in locomotor activity was observed in ELA2KO in EPM, this feature was not the main source of variation in the other parameters analyzed. The marble-burying test (MBT) indicated increase in repetitive behavior, observed by a higher number of buried marbles. The actimeter test indicated a decrease in total activity and confirmed the increase in repetitive behavior. The spatial memory was tested by repeated exposure to the actimeter in a 24-h interval. Both ELA2KO and WT exhibited decreased activity compared to the first exposure, without any distinction between the genotypes. However, when submitted to the cued fear conditioning, ELA2KO displayed lower levels of freezing behavior in the extinction session when compared to WT, but no difference was observed during the conditioning phase. Increased levels of BDNF were found in the prefrontal cortex but not in the hippocampus of ELA2KO mice compared to WT. Finally, in silico analysis indicates that ELA2 is putatively able to cleave BDNF, and incubation of the purified enzyme with BDNF led to the degradation of the latter. Our data suggested an anxiogenic- and antidepressant-like phenotype of ELA2KO, possibly associated with increased levels of BDNF in the prefrontal cortex.
  • Li, Hao; Hohenstein, Peter; Kuure, Satu (2021)
    The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
  • Turunen, Pauli M.; Louhivuori, Lauri M.; Louhivuori, Verna; Kukkonen, Jyrki P.; Akerman, Karl E. (2018)
    Cell-cell communication plays a central role in the guidance of migrating neuronal precursor cells during the development of the cerebral cortex. Endocannabinoids (eCBs) have previously been shown to be one of the central factors regulating neuronal migration. In this study the effects of eCBs on different parameters, expected to affect embryonic cortical neuronal motility have been analyzed in neurosphere-derived neuroblasts using time-lapse microscopy. Increased endogenous production of the endocannabinoid 2-arachidonyl glycerol (2-AG) causes bursts of neuroblast motility. The neuroblasts move longer distances and show a low frequency of turning, and the number of neuron-neuron contacts are reduced. Similar changes occur interfering with the function of the metabotropic glutamate receptor 5 (mGluR5) or its transducer canonical transient receptor potential channel 3 (TRPC3) or the neuregulin receptor ErbB4. Blocking of 2-AG production reverses these effects. The data suggest that eCB-regulated neuronal motility is controlled by mGluR5/TRPC3 activity possibly via NRG/ErbB4 signaling. (C) 2018 IBRO. Published by Elsevier Ltd. All rights reserved.