Browsing by Subject "NITROUS-OXIDE"

Sort by: Order: Results:

Now showing items 1-18 of 18
  • Halmeenmäki, Elisa; Heinonsalo, Jussi; Putkinen, Anuliina; Santalahti, Minna; Fritze, Hannu; Pihlatie, Mari (2017)
    The contribution of boreal forest plants to the methane (CH4) cycle is still uncertain. We studied the above and belowground CH4 fluxes of common boreal plants, and assessed the possible contribution of CH4 producing and oxidizing microbes (methanogens and methanotrophs, respectively) to the fluxes. We measured the CH4 fluxes and the amounts of methanogens and methanotrophs in the above- and belowground parts of Vaccinium myrtillus, Vaccinium vitis-idaea, Calluna vulgaris and Pinus sylvestris seedlings and in non-planted soil in a microcosm experiment. The shoots of C. vulgaris and P. sylvestris showed on average emissions of CH4, while the shoots of the Vaccinium species indicated small CH4 uptake. All the root-soil-compartments consumed CH4, however, the non-rooted soils showed on average small CH4 emission. We found methanotrophs from all the rooted and non-rooted soils. Methanogens were not detected in the plant or soil materials. The presence of plant roots seem to increase the amount of methanotrophs and thus CH4 uptake in the soil. The CH4 emissions from the shoots of C. vulgaris and P. sylvestris demonstrate that the plants have an important contribution to the CH4 exchange dynamics in the plant-soil systems.
  • Köster, Egle; Köster, Kajar; Berninger, Frank; Prokushkin, Anatoly; Aaltonen, Heidi; Zhou, Xuan; Pumpanen, Jukka (2018)
    Rising air temperatures and changes in precipitation patterns in boreal ecosystems are changing the fire occurrence regimes (intervals, severity, intensity, etc.). The main impacts of fires are reported to be changes in soil physical and chemical characteristics, vegetation stress, degradation of permafrost, and increased depth of the active layer. Changes in these characteristics influence the dynamics of carbon dioxide (CO2) and methane (CH4) fluxes. We have studied the changes in CO2 and CH4 fluxes from the soil in boreal forest areas in central Siberia underlain by continuous permafrost and the possible impacts of the aforementioned environmental factors on the emissions of these greenhouse gases. We have used a fire chronosequence of areas, with the last fire occurring 1, 23, 56, and more than 100 years ago. The soils in our study acted as a source of CO2. Emissions of CO2 were lowest at the most recently burned area and increased with forest age throughout the fire chronosequence. The CO2 flux was influenced by the pH of the top 5cm of the soil, the biomass of the birch (Betula) and alder (Duschekia) trees, and by the biomass of vascular plants in the ground vegetation. Soils were found to be a CH4 sink in all our study areas. The uptake of CH4 was highest in the most recently burned area (forest fire one year ago) and the lowest in the area burned 56 years ago, but the difference between fire chronosequence areas was not significant. According to the linear mixed effect model, none of the tested factors explained the CH4 flux. The results confirm that the impact of a forest fire on CO2 flux is long-lasting in Siberian boreal forests, continuing for more than 50 years, but the impact of forest fire on CH4 flux is minimal.
  • Wang, K.; Liu, C.; Zheng, X.; Pihlatie, M.; Li, B.; Haapanala, S.; Vesala, T.; Liu, H.; Wang, Y.; Liu, G.; Hu, F. (2013)
  • Koster, Kajar; Koster, Egle; Berninger, Frank; Heinonsalo, Jussi; Pumpanen, Jukka (2018)
    Reindeer (Rangifer tarandus L.) is considered to be an important mammalian herbivore, strongly influencing Arctic lichen-dominated ecosystems. There is no wide knowledge about the effect of reindeer on greenhouse gas (GHG) fluxes in northern boreal forests. Ground vegetation plays an important role in absorbing nitrogen (N) and carbon dioxide (CO2) from the atmosphere. Lately, it has also been found to be a significant source of nitrous oxide (N2O) and a small source of methane (CH4). We investigated the influence of reindeer grazing on field layer GHG (CO2, CH4, and N2O) fluxes, ground vegetation coverage and biomass, and soil physical properties (temperature and moisture) in a northern boreal forest. At our study site, the reindeer-induced replacement of lichen by mosses had contrasting effects on the GHG fluxes originating from the field layer. Field layer CO2 efflux was significantly higher in grazed areas. The field layer was a CH4 sink in all areas, but grazed areas absorbed more CH4 compared to non-grazed areas. Although total N2O fluxes remained around 0 in grazed areas, a small N2O sink occurred in non-grazed areas with lower moss biomass. Our results indicated that grazing by reindeer in northern boreal forests affects GHG fluxes from the forest field layer both positively and negatively, and these emissions largely depend on grazing-induced changes in vegetation composition.
  • Kohtala, Henrik Samuel; Theilmann, Wiebke; Rosenholm, Marko; Penna, Leena; Karabulut, Gulsum; Uusitalo, Salla; Järventausta, Kaija; Yli-Hankala, Arvi; Yalcin, Ipek; Matsui, Nobuaki; Wigren, Henna-Kaisa; Rantamäki, Tomi (2019)
    Rapid antidepressant effects of ketamine become most evident when its psychotomimetic effects subside, but the neurobiological basis of this lag remains unclear. Laughing gas (N2O), another NMDA-R (N-methyl-d-aspartate receptor) blocker, has been reported to bring antidepressant effects rapidly upon drug discontinuation. We took advantage of the exceptional pharmacokinetic properties of N2O to investigate EEG (electroencephalogram) alterations and molecular determinants of antidepressant actions during and immediately after NMDA-R blockade. Effects of the drugs on brain activity were investigated in C57BL/6 mice using quantitative EEG recordings. Western blot and qPCR were used for molecular analyses. Learned helplessness (LH) was used to assess antidepressant-like behavior. Immediate-early genes (e.g., bdnf) and phosphorylation of mitogen-activated protein kinasemarkers of neuronal excitabilitywere upregulated during N2O exposure. Notably, phosphorylation of BDNF receptor TrkB and GSK3 (glycogen synthase kinase 3) became regulated only gradually upon N2O discontinuation, during a brain state dominated by slow EEG activity. Subanesthetic ketamine and flurothyl-induced convulsions (reminiscent of electroconvulsive therapy) also evoked slow oscillations when their acute pharmacological effects subsided. The correlation between ongoing slow EEG oscillations and TrkB-GSK3 signaling was further strengthened utilizing medetomidine, a hypnotic-sedative agent that facilitates slow oscillations directly through the activation of (2)-adrenergic autoreceptors. Medetomidine did not, however, facilitate markers of neuronal excitability or produce antidepressant-like behavioral changes in LH. Our results support a hypothesis that transient cortical excitability and the subsequent regulation of TrkB and GSK3 signaling during homeostatic emergence of slow oscillations are critical components for rapid antidepressant responses.
  • Korkiakoski, Mika; Tuovinen, Juha-Pekka; Penttila, Timo; Sarkkola, Sakari; Ojanen, Paavo; Minkkinen, Kari; Rainne, Juuso; Laurila, Tuomas; Lohila, Annalea (2019)
    The most common forest management method in Fennoscandia is rotation forestry, including clear-cutting and forest regeneration. In clear-cutting, stem wood is removed and the logging residues are either removed or left on site. Clear-cutting changes the microclimate and vegetation structure at the site, both of which affect the site's carbon balance. Peat soils with poor aeration and high carbon densities are especially prone to such changes, and significant changes in greenhouse gas exchange can be expected. We measured carbon dioxide (CO2) and energy fluxes with the eddy covariance method for 2 years (April 2016-March 2018) after clear-cutting a drained peatland forest. We observed a significant rise (23 cm) in the water table level and a large CO2 source (first year: 3086 +/- 148 g CO2 m(-2) yr(-1); second year: 2072 +/- 124 g CO2 m(-2) yr(-1)). These large CO2 emissions resulted from the very low gross primary production (GPP) following the removal of photosynthesizing trees and the decline of ground vegetation, unable to compensate for the decomposition of logging residues and peat. During the second summer (June-August) after the clear-cutting, GPP had already increased by 96% and total ecosystem respiration decreased by 14% from the previous summer. The mean daytime ratio of sensible to latent heat flux decreased after harvesting from 2.6 in May 2016 to 1.0 in August 2016, and in 2017 it varied mostly within 0.6-1.0. In April-September, the mean daytime sensible heat flux was 33% lower and latent heat flux 40% higher in 2017, probably due to the recovery of ground vegetation that increased evapotranspiration and albedo of the site. In addition to CO2 and energy fluxes, we measured methane (CH4) and nitrous oxide (N2O) fluxes with manual chambers. After the clear-cutting, the site turned from a small CH4 sink into a small source and from N2O neutral to a significant N2O source. Compared to the large CO2 emissions, the 100-year global warming potential (GWP100) of the CH4 emissions was negligible. Also, the GWP100 due to increased N2O emissions was less than 10% of that of the CO2 emission change.
  • Jauhiainen, Jyrki; Page, Susan E.; Vasander, Harri (2016)
    Agricultural and other land uses on ombrotrophic lowland tropical peat swamps typically lead to reduced vegetation biomass and water table drawdown. We review what is known about greenhouse gas (GHG) dynamics in natural and degraded tropical peat systems in south-east Asia, and on this basis consider what can be expected in terms of GHG dynamics under restored conditions. Only limited in situ data are available on the effects of restoration and the consequences for peat carbon (C) dynamics. Hydrological restoration seeks to bring the water table closer to the peat surface and thus re-create near-natural water table conditions, in order to reduce wildfire risk and associated fire impacts on the peat C store, as well as to reduce aerobic peat decomposition rates. However, zero emissions are unlikely to be achieved due to the notable potential for carbon dioxide (CO2) production from anaerobic peat decomposition processes. Increased vegetation cover (ideally woody plants) resulting from restoration will increase shading and reduce peat surface temperatures, and this may in turn reduce aerobic decomposition rates. An increase in litter deposition rate will compensate for C losses by peat decomposition but also increase the supply of labile C, which may prime decomposition, especially in peat enriched with recalcitrant substrates. The response of tropical peatland GHG emissions to peatland restoration will also vary according to previous land use and land use intensity.
  • Bi, Qing-Fang; Jin, Bing-Jie; Zhu, Dong; Jiang, Yu-Gen; Zheng, Bang-Xiao; O'Connor, Patrick; Yang, Xiao-Ru; Richter, Andreas; Lin, Xian-Yong; Zhu, Yong-Guan (2021)
    The positive roles of earthworms on soil functionality has been extensively documented. The capacity of the earthworm gut microbiota on decomposition and nutrient cycling under long-term fertilization in field conditions has rarely been studied. Here, we report the structural, taxonomic, and functional responses of Eisenia foetida and Pheretima guillelmi gut microbiota to different fertilization regimes and durations using 16S rRNA gene-based Illumina sequencing and high-throughput quantitative PCR techniques. Our results revealed that the core gut microbiota, especially the fermentative bacteria were mainly sourced from the soil, but strongly stimulated with species-specificity, potential benefits for the host and soil health. The functional compositions of gut microbiota were altered by fertilization with fertilization duration being more influential than fertilization regimes. Moreover, the combination of organic and inorganic fertilization with the longer duration resulted in a higher richness and connectivity in the gut microbiota, and also their functional potential related to carbon (C), nitrogen, and phosphorus cycling, particularly the labile C decomposition, denitrification, and phosphate mobilization. We also found that long-term inorganic fertilization increased the abundance of pathogenic bacteria in the P. guillelmi gut. This study demonstrates that understanding earthworm gut microbiota can provide insights into how agricultural practices can potentially alter soil ecosystem functions through the interactions between soil and earthworm gut microbiotas.
  • Kohtala, Henrik Samuel; Theilmann, Wiebke; Rosenholm, Marko Petteri; Müller, Heidi K.; Kiuru, Paula Sinikka; Wegener, Gregers; Yli-Kauhaluoma, Jari Tapani; Rantamäki, Tomi Pentti Johannes (2019)
    Subanesthetic rather than anesthetic doses are thought to bring the rapid antidepressant effects of the NMDAR (N-methyl-D-aspartate receptor) antagonist ketamine. Among molecular mechanisms, activation of BDNF receptor TrkB along with the inhibition of GSK3 beta (glycogen synthase kinase 3 beta) are considered as critical molecular level determinants for ketamine's antidepressant effects. Hydroxynorketamines (2R,6R)-HNK and (2S,6S) HNK), non-anesthetic metabolites of ketamine, have been proposed to govern the therapeutic effects of ketamine through a mechanism not involving NMDARs. However, we have shown that nitrous oxide, another NMDAR blocking anesthetic and a putative rapid-acting antidepressant, evokes TrkB-GSK3 beta signaling alterations during rebound slow EEG (electroencephalogram) oscillations. We investigated here the acute effects of ketamine, 6,6-d(2)-ketamine (a ketamine analogue resistant to metabolism) and cis-HNK that contains (2R,6R) and (2S,6S) enantiomers in 1:1 ratio, on TrkB-GSK3 beta signaling and concomitant electroencephalographic (EEG) alterations in the adult mouse cortex. Ketamine dose-dependently increased slow oscillations and phosphorylations of TrkB(Y816) and GSK3 beta(59) in crude brain homogenates (i.e. sedative/anesthetic doses ( > 50 mg/kg, i.p.) produced more prominent effects than a subanesthetic dose (10 mg/kg, i.p.)). Similar, albeit less obvious, effects were seen in crude synaptosomes. A sedative dose of 6,6-d(2)-ketamine (100 mg/kg, i.p.) recapitulated the effects of ketamine on TrkB and GSK3 beta phosphorylation while cis-HNK at a dose of 20 mg/kg produced negligible acute effects on TrkB-GSK3 beta signaling or slow oscillations. These findings suggest that the acute effects of ketamine on TrkB-GSK3 beta signaling are by no means restricted to subanesthetic (i.e. antidepressant) doses and that cis-HNK is not responsible for these effects.
  • Ribeiro-Kumara, Christine; Pumpanen, Jukka; Heinonsalo, Jussi; Metslaid, Marek; Orumaa, Argo; Jõgiste, Kalev; Berninger, Frank; Köster, Kajar (2020)
    Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil–atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179years following stand-replacing fires in hemiboreal Scots pine forests in Estonia. Changes in extracellular activity, litter decomposition, vegetation biomass, and soil physicochemical properties were assessed in relation to carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions. Soil temperature was highest 8years after fire, whereas soil moisture varied through the fire chronosequences without a consistent pattern. Litter decomposition and CO2 efflux were still lower 8years after fire compared with pre-fire levels (179years after fire). Both returned to pre-fire levels before vegetation re-established, and CO2 efflux was only strongly responsive to temperature from 19years after fire onward. Recovery of CO2 efflux in the long term was associated with a moderate effect of fire on enzyme activity, the input of above- and below-ground litter carbon, and the re-establishment of vegetation. Soil acted as a CH4 sink and N2O source similarly in all successional stages. Compared with soil moisture and time after fire, soil temperature was the most important predictor for both GHGs. The re-establishment of overstorey and vegetation cover (mosses and lichens) might have caused an increase in CH4 and N2O effluxes in the studied areas, respectively.
  • Koskinen, Markku; Minkkinen, K.; Ojanen, P.; Kamarainen, M.; Laurila, Tuomas; Lohila, A. (2014)
  • Putkinen, Anuliina; Siljanen, Henri M. P.; Laihonen, Antti; Paasisalo, Inga; Porkka, Kaija; Tiirola, Marja; Haikarainen, Iikka; Tenhovirta, Salla; Pihlatie, Mari (2021)
    Methane (CH4) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4-producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4-producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.
  • Pihlatie, Mari; Rannik, Ullar; Haapanala, Sami; Peltola, Olli; Shurpali, Narasinha; Martikainen, Pertti J.; Lind, Saara; Hyvönen, Niina; Virkajärvi, Perttu; Zahniser, Mark; Mammarella, Ivan (2016)
    Carbon monoxide (CO) is an important reactive trace gas in the atmosphere, while its sources and sinks in the biosphere are poorly understood. Soils are generally considered as a sink of CO due to microbial oxidation processes, while emissions of CO have been reported from a wide range of soil-plant systems. We measured CO fluxes using the micrometeorological eddy covariance method from a bioenergy crop (reed canary grass) in eastern Finland from April to November 2011. Continuous flux measurements allowed us to assess the seasonal and diurnal variability and to compare the CO fluxes to simultaneously measured net ecosystem exchange of CO2, N2O and heat fluxes as well as to relevant meteorological, soil and plant variables in order to investigate factors driving the CO exchange. The reed canary grass (RCG) crop was a net source of CO from mid-April to mid-June and a net sink throughout the rest of the measurement period from mid-June to November 2011, excluding a measurement break in July. CO fluxes had a distinct diurnal pattern with a net CO uptake in the night and a net CO emission during the daytime with a maximum emission at noon. This pattern was most pronounced in spring and early summer. During this period the most significant relationships were found between CO fluxes and global radiation, net radiation, sensible heat flux, soil heat flux, relative humidity, N2O flux and net ecosystem exchange. The strong positive correlation between CO fluxes and radiation suggests abiotic CO production processes, whereas the relationship between CO fluxes and net ecosystem exchange of CO2, and night-time CO fluxes and N2O emissions indicate biotic CO formation and microbial CO uptake respectively. The study shows a clear need for detailed process studies accompanied by continuous flux measurements of CO exchange to improve the understanding of the processes associated with CO exchange.
  • Wachiye, Sheila Aswani; Merbold, Lutz; Vesala, Timo; Rinne, Janne; Leitner, Sonja; Räsänen, Matti; Vuorinne, Ilja; Heiskanen, Janne; Pellikka, Petri (2021)
    Sisal (Agave sisalana) is a climate-resilient crop grown on large-scale farms in semi-arid areas. However, no studies have investigated soil greenhouse gas (GHGs: CO2, N2O and CH4) fluxes from these plantations and how they relate to other land cover types. We examined GHG fluxes (Fs) in a sisal chronosequence at Teita Sisal Estate in southern Kenya. The effects of stand age on Fs were examined using static GHG chambers and gas chromatography for a period of one year in seven stands: young stands aged 1-3 years, mature stands aged 7-8 years, and old stands aged 13-14 years. Adjacent bushland served as a control site representing the surrounding land use type. Mean CO2 fluxes were highest in the oldest stand (56 +/- 3 mg C m(-2) h(-1)) and lowest in the 8-year old stand (38 +/- 3 mg C m(-2) h(-1)), which we attribute to difference in root respiration between the stand. All stands had 13-28% higher CO2 fluxes than bushland (32 +/- 3 mg C m(-2) h(-1)). CO2 fluxes in the wet season were about 70% higher than dry season across all sites. They were influenced by soil water content (W-S) and vegetation phenology. Mean N2O fluxes were very low (
  • Wachiye, Sheila; Merbold, Lutz; Vesala, Timo; Rinne, Janne; Rasanen, Matti; Leitner, Sonja; Pellikka, Petri (2020)
    Field measurement data on greenhouse gas (GHG) emissions are still scarce for many land-use types in Africa, causing a high level of uncertainty in GHG budgets. To address this gap, we present in situ measurements of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions from the lowlands of southern Kenya. We conducted eight chamber measurement campaigns on gas exchange from four dominant land-use types (LUTs) comprising (1) cropland, (2) bushland, (3) grazing land, and (4) conservation land between 29 November 2017 and 3 November 2018, accounting for regional seasonality (wet and dry seasons and transitions periods). Mean CO2 emissions for the whole observation period were the highest by a significant margin (p value <0.05) in the conservation land (75 +/- 6 mg CO2-C m(-2)h(-1)) compared to the three other sites, which ranged from 45 +/- 4 mg CO2-C m(-2)h(-1) (bush-land) to 50 +/- 5 mg CO2-C m(-2)h(-1) (grazing land). Further-more, CO2 emissions varied between seasons, with significantly higher emissions in the wet season than the dry season. Mean N2O emissions were highest in cropland (2.7 0.6 lug N2O-N m(-2) h(-1)) and lowest in bushland (1.2 0.4 pg N2O-N m(-2)h(-1)) but did not vary with season. In fact, N2O emissions were very low both in the wet and dry seasons, with slightly elevated values during the early days of the wet seasons in all LUTs. On the other hand, CH4 emissions did not show any significant differences across LUTs and seasons. Most CH4 fluxes were below the limit of detection (LOD, 0.03 mg CH4-C m(-2) h(-1)). We attributed the difference in soil CO2 emissions between the four sites to soil C content, which differed between the sites and was highest in the conservation land. In addition, CO2 and N2O emissions positively correlated with soil moisture, thus an increase in soil moisture led to an increase in emissions. Furthermore, vegetation cover explained the seasonal variation in soil CO2 emissions as depicted by a strong positive correlation between the normalized difference vegetation index (NDVI) and CO2 emissions, most likely because, with more green (active) vegetation cover, higher CO2 emissions occur due to enhanced root respiration compared to drier periods. Soil temperature did not show a clear correlation with either CO2 or N2O emissions, which is likely due to the low variability in soil temperature between seasons and sites. Based on our results, soil C, active vegetation cover, and soil moisture are key drivers of soil GHG emissions in all the tested LUTs in southern Kenya. Our results are within the range of previous GHG flux measurements from soils from various LUTs in other parts of Kenya and contribute to more accurate baseline GHG emission estimates from Africa, which are key to reducing uncertainties in global GHG budgets as well as for informing policymakers when discussing low -emission development strategies.
  • Pavelka, Marian; Acosta, Manuel; Kiese, Ralf; Altimir, Nuria; Bruemmer, Christian; Crill, Patrick; Darenova, Eva; Fuss, Roland; Gielen, Bert; Graf, Alexander; Klemedtsson, Leif; Lohila, Annalea; Longdoz, Bernhard; Lindroth, Anders; Nilsson, Mats; Jimenez, Sara Maranon; Merbold, Lutz; Montagnani, Leonardo; Peichl, Matthias; Pihlatie, Mari; Pumpanen, Jukka; Ortiz, Penelope Serrano; Silvennoinen, Hanna; Skiba, Ute; Vestin, Patrik; Weslien, Per; Janous, Dalibor; Kutsch, Werner (2018)
    Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.
  • Vainio, Elisa; Peltola, Olli; Kasurinen, Ville; Kieloaho, Antti-Jussi; Tuittila, Eeva-Stiina; Pihlatie, Mari (2021)
    Boreal forest soils are globally an important sink for methane (CH4), while these soils are also capable of emitting CH4 under favourable conditions. Soil wetness is a well-known driver of CH4 flux, and the wetness can be estimated with several terrain indices developed for the purpose. The aim of this study was to quantify the spatial variability of the forest floor CH4 flux with a topography-based upscaling method connecting the flux with its driving factors. We conducted spatially extensive forest floor CH4 flux and soil moisture measurements, complemented by ground vegetation classification, in a boreal pine forest. We then modelled the soil moisture with a random forest model using digital-elevation-model-derived topographic indices, based on which we upscaled the forest floor CH4 flux. The modelling was performed for two seasons: May–July and August–October. Additionally, we evaluated the number of flux measurement points needed to get an accurate estimate of the flux at the whole study site merely by averaging. Our results demonstrate high spatial heterogeneity in the forest floor CH4 flux resulting from the soil moisture variability as well as from the related ground vegetation. The mean measured CH4 flux at the sample points was −5.07 µmol m−2 h−1 in May–July and −8.67 µmol m−2 h−1 in August–October, while the modelled flux for the whole area was −7.42 and −9.91 µmol m−2 h−1 for the two seasons, respectively. The spatial variability in the soil moisture and consequently in the CH4 flux was higher in the early summer (modelled range from −12.3 to 6.19 µmol m−2 h−1) compared to the autumn period (range from −14.6 to −2.12 µmol m−2 h−1), and overall the CH4 uptake rate was higher in autumn compared to early summer. In the early summer there were patches emitting high amounts of CH4; however, these wet patches got drier and smaller in size towards the autumn, changing their dynamics to CH4 uptake. The mean values of the measured and modelled CH4 fluxes for the sample point locations were similar, indicating that the model was able to reproduce the results. For the whole site, upscaling predicted stronger CH4 uptake compared to simply averaging over the sample points. The results highlight the small-scale spatial variability of the boreal forest floor CH4 flux and the importance of soil chamber placement in order to obtain spatially representative CH4 flux results. To predict the CH4 fluxes over large areas more reliably, the locations of the sample points should be selected based on the spatial variability of the driving parameters, in addition to linking the measured fluxes with the parameters.
  • Miettinen, Heli; Pumpanen, Jukka; Heiskanen, Jouni J.; Aaltonen, Hermanni; Mammarella, Ivan; Ojala, Anne; Levula, Janne; Rantakari, Miitta Maria (2015)