Browsing by Subject "NRF2"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Gospodaryov, Dmytro; Strilbytska, Olha M.; Semaniuk, Uliana; Perkhulyn, Natalia; Rovenko, Bohdana M.; Yurkevych, Ihor S.; Barata, Ana G.; Dick, Tobias P.; Lushchak, Oleh; Jacobs, Howard T. (2020)
    Mitochondrial alternative NADH dehydrogenase (aNDH) was found to extend lifespan when expressed in the fruit fly. We have found that fruit flies expressing aNDH from Ciona intestinalis (NDX) had 17-71% lifespan prolongation on media with different protein-tocarbohydrate ratios except NDX-expressing males that had 19% shorter lifespan than controls on a high protein diet. NDX-expressing flies were more resistant to organic xenobiotics, 2,4-dichlorophenoxyacetic acid and alloxan, and inorganic toxicant potassium iodate, and partially to sodium molybdate treatments. On the other hand, NDX-expressing flies were more sensitive to catechol and sodium chromate. Enzymatic analysis showed that NDX-expressing males had higher glucose 6-phosphate dehydrogenase activity, whilst both sexes showed increased glutathione S-transferase activity.
  • ARIA Grp; Bousquet, Jean; Anto, Josep M.; Czarlewski, Wienczyslawa; Haahtela, Tari; Zuberbier, Torsten; Erhola, Marina (2021)
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.
  • Bousquet, Jean; Le Moing, Vincent; Blain, Hubert; Czarlewski, Wienczyslawa; Zuberbier, Torsten; Torre, Raphael de la; Lozano, Nieves Pizarro; Reynes, Jacques; Bedbrook, Anna; Cristol, Jean-Paul; Cruz, Alvaro A.; Fiocchi, Alessandro; Haahtela, Tari; Iaccarino, Guido; Klimek, Ludger; Kuna, Piotr; Melén, Erik; Mullol, Joaquim; Samolinski, Boleslaw; Valiulis, Arunas; Anto, Josep M. (2021)
    COVID-19 is described in a clinical case involving a patient who proposed the hypothesis that Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-interacting nutrients may help to prevent severe COVID-19 symptoms. Capsules of broccoli seeds containing glucoraphanin were being taken before the onset of SARS-CoV-2 infection and were continued daily for over a month after the first COVID-19 symptoms. They were found to reduce many of the symptoms rapidly and for a duration of 6-12 h by repeated dosing. When the patient was stable but still suffering from cough and nasal obstruction when not taking the broccoli capsules, a double-blind induced cough challenge confirmed the speed of onset of the capsules (less than 10 min). A second clinical case with lower broccoli doses carried out during the cytokine storm confirmed the clinical benefits already observed. A third clinical case showed similar effects at the onset of symptoms. In the first clinical trial, we used a dose of under 600 mmol per day of glucoraphanin. However, such a high dose may induce pharmacologic effects that require careful examination before the performance of any study. It is likely that the fast onset of action is mediated through the TRPA1 channel. These experimental clinical cases represent a proof-of-concept confirming the hypothesis that Nrf2interacting nutrients are effective in COVID-19. However, this cannot be used in practice before the availability of further safety data, and confirmation is necessary through proper trials on efficacy and safety.
  • Torrente, Laura; Maan, Gunjit; Rezig, Asma Oumkaltoum; Quinn, Jean; Jackson, Angus; Grilli, Andrea; Casares, Laura; Zhang, Ying; Kulesskiy, Evgeny; Saarela, Jani; Bicciato, Silvio; Edwards, Joanne; Dinkova-Kostova, Albena T.; de la Vega, Laureano (2020)
    Aberrant hyperactivation of nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) is a common event in many tumour types and associates with resistance to therapy and poor patient prognosis; however, its relevance in colorectal tumours is not well-established. Measuring the expression of surrogate genes for NRF2 activity in silico, in combination with validation in patients' samples, we show that the NRF2 pathway is upregulated in colorectal tumours and that high levels of nuclear NRF2 correlate with a poor patient prognosis. These results highlight the need to overcome the protection provided by NRF2 and present an opportunity to selectively kill cancer cells with hyperactive NRF2. Exploiting the CRISPR/Cas9 technology, we generated colorectal cancer cell lines with hyperactive NRF2 and used them to perform a drug screen. We identified AT9283, an Aurora kinase inhibitor, for its selectivity towards killing cancer cells with hyperactive NRF2 as a consequence to either genetic or pharmacological activation. Our results show that hyperactivation of NRF2 in colorectal cancer cells might present a vulnerability that could potentially be therapeutically exploited by using the Aurora kinase inhibitor AT9283.
  • Suojalehto, Hille; Wolff, Henrik; Lindström, Irmeli; Puustinen, Anne (2018)
    Background: The mechanisms of work-related asthma (WRA) are incompletely delineated. Nasal cell samples may be informative about processes in the lower airways. Our aim was to determine the nasal protein expression profiles of WRA caused by different kind of exposures. Methods: We collected nasal brush samples from 82 nonsmoking participants, including healthy controls and WRA patients exposed to (i) protein allergens, (ii) isocyanates and (iii) welding fumes the day after relevant exposure. The proteome changes in samples were analysed by two-dimensional difference gel electrophoresis, and the differentially regulated proteins found were identified by mass spectrometry. Immunological comparison was carried out using Western blot. Results: We detected an average of 2500 spots per protein gel. Altogether, 228 protein spots were chosen for identification, yielding 77 different proteins. Compared to the controls, exposure to protein allergens had the largest effects on the proteome. Hierarchical clustering revealed that protein allergen- and isocyanate-related asthma had similar profiles, whereas asthma related to welding fumes differed. The highly overrepresented functional categories in the asthma groups were defence response, protease inhibitor activity, inflammatory and calcium signalling, complement activation and cellular response to oxidative stress. Immunological analysis confirmed the found abundance differences in galectin 10 and protein S100-A9 between the groups. Conclusions: Work-related asthma patients exposed to protein allergens and isocyanates elicit similar nasal proteome responses and the profiles of welders and healthy controls were alike. Revealed biological activities of the protein expression changes are associated with allergic inflammation and asthma.
  • Oksanen, Minna; Hyötyläinen, Ida; Trontti, Kalevi; Rolova, Taisia; Wojciechowski, Sara; Koskuvi, Marja; Viitanen, Matti; Levonen, Anna-Liisa; Hovatta, Iiris; Roybon, Laurent; Lehtonen, Sarka; Kanninen, Katja M.; Hämäläinen, Riikka H.; Koistinaho, Jari (2020)
    Alzheimer's disease (AD) is a common dementia affecting a vast number of individuals and significantly impairing quality of life. Despite extensive research in animal models and numerous promising treatment trials, there is still no curative treatment for AD. Astrocytes, the most common cell type of the central nervous system, have been shown to play a role in the major AD pathologies, including accumulation of amyloid plaques, neuroinflammation, and oxidative stress. Here, we show that inflammatory stimulation leads to metabolic activation of human astrocytes and reduces amyloid secretion. On the other hand, the activation of oxidative metabolism leads to increased reactive oxygen species production especially in AD astrocytes. While healthy astrocytes increase glutathione (GSH) release to protect the cells, Presenilin-1-mutated AD patient astrocytes do not. Thus, chronic inflammation is likely to induce oxidative damage in AD astrocytes. Activation of NRF2, the major regulator of cellular antioxidant defenses, encoded by the NFE2L2 gene, poses several beneficial effects on AD astrocytes. We report here that the activation of NRF2 pathway reduces amyloid secretion, normalizes cytokine release, and increases GSH secretion in AD astrocytes. NRF2 induction also activates the metabolism of astrocytes and increases the utilization of glycolysis. Taken together, targeting NRF2 in astrocytes could be a potent therapeutic strategy in AD.
  • Ruotsalainen, Anna-Kaisa; Lappalainen, Jari P.; Heiskanen, Emmi; Merentie, Mari; Sihvola, Virve; Näpänkangas, Juha; Lottonen-Raikaslehto, Line; Kansanen, Emilia; Adinolfi, Simone; Kaarniranta, Kai; Ylä-Herttuala, Seppo; Jauhiainen, Matti; Pirinen, Eija; Levonen, Anna-Liisa (2019)
    Aims Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR-/-), and LDLR-/- mice expressing apoB-100 only (LDLR-/- ApoB(100/100)) having a humanized lipoprotein profile. Methods and results LDLR-/- mice were fed a high-fat diet (HFD) for 6 or 12weeks and LDLR(-/-)ApoB(100/100) mice a regular chow diet for 6 or 12months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR-/- mice reduced total plasma cholesterol after 6weeks of HFD and triglycerides in LDLR(-/-)ApoB(100/100) mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR(-/-)ApoB(100/100) mice as it increased plaque calcification. Moreover, approximate to 36% of Nrf2(-/-)LDLR(-/-)ApoB(100/100) females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR(-/-)ApoB(100/100) female mice at age of 12months. Conclusions Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR(-/-)ApoB(100/100) mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.