Sort by: Order: Results:

Now showing items 1-2 of 2
  • Fang, Hu; Barbour, Jayne A.; Poulos, Rebecca C.; Katainen, Riku; Aaltonen, Lauri A.; Wong, Jason W. H. (2020)
    Author summary Cancer arises through the accumulation of somatic mutations. The way that these somatic mutations form can vary greatly in different cancers. One of the most mutagenic processes that have been identified is caused by mutations within a replicative DNA polymerase known as Polymerase Epsilon (POLE). Cancers with such mutations present with hundreds of thousands of somatic mutations in their genome. Previous cancer genomics studies have identified a number of mutation hotspots in POLE, however how these different POLE mutants behave in affecting mutation distribution has not been studied. Here, we describe the genome-wide mutation profiles of distinct POLE mutant cancers. We find that different mutants indeed result in different mutation profiles and that this can be explained by the different fidelities of these mutants in replicating specific DNA sequences. Significantly, these differences have important implications in cancer formation as we found that a POLE mutation is strongly associated with a specific truncation of the TP53 cancer driver gene. This study furthers our understanding of the POLE mutagenic process in cancer and provide important insights into carcinogenesis in cancers with such mutations.
  • Ou, Hui-Ling; Kim, Christine S.; Uszkoreit, Simon; Wickström, Sara A.; Schumacher, Björn (2019)
    Genome integrity in primordial germ cells (PGCs) is a prerequisite for fertility and species maintenance. In C. elegans, PGCs require global-genome nucleotide excision repair (GG-NER) to remove UV-induced DNA lesions. Failure to remove the lesions leads to the activation of the C. elegans p53, CEP-1, resulting in mitotic arrest of the PGCs. We show that the eIF4E2 translation initiation factor IFE-4 in somatic gonad precursor (SGP) niche cells regulates the CEP-1/p53-mediated DNA damage response (DDR) in PGCs. We determine that the IFE-4 translation target EGL-15/FGFR regulates the non-cell-autonomous DDR that is mediated via FGF-like signaling. Using hair follicle stem cells as a paradigm, we demonstrate that the eIF4E2-mediated niche cell regulation of the p53 response in stem cells is highly conserved in mammals. We thus reveal that the somatic niche regulates the CEP-1/p53-mediated DNA damage checkpoint in PGCs. Our data suggest that the somatic niche impacts the stability of heritable genomes.