Browsing by Subject "NUTRIENT RESORPTION"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Li, Yan; Kang, Jieyu; Li, Zhijun; Korpelainen, Helena; Li, Chunyang (2020)
    Aims Populus deltoides and P. euramericana are widely used in China as major forestry species. At present, little is known about their responses to nitrogen (N) deficiency when grown in monocultures or mixed plantations. The aim of this investigation was to analyze the growth, and morphological and physiological responses of P. deltoides and P. euramericana to different N levels under competition conditions. Methods We employed two Populus species (P. deltoides and P. euramericana) to discover how N deficiency affects plant traits under different competition types (P. deltoides x P. deltoides, intraspecific competition; P. euramericana x P. euramericana, intraspecific competition; P. deltoides x P. euramericana, interspecific competition). Potted seedlings were exposed to two N levels (normal N, N deficiency), and nitrogen- and competition-driven differences in growth, morphology and physiology were examined. Important Findings Under normal N conditions, interspecific competition significantly decreased the total root weight, root mass fraction (RMF), root-shoot ratio (R/S) and carbon/nitrogen ratio (C/N), and increased the leaf dry weight, leaf mass fraction and total leaf area of P. euramericana compared with intraspecific competition. The same conditions significantly affected the growth and morphological variables of P. deltoides, except for the dry weight of fine roots, R/S, specific leaf area, RMF, total nitrogen content and C/N compared with intraspecific competition. In addition, chlorophyll a (Chla), total chlorophyll (Tchl), carotenoid contents (Caro) and the carbon isotope composition (delta C-13) of P. deltoides were significantly lower in interspecific competition than in intraspecific competition, but no difference was detected in P. euramericana. The effects of N deficiency on P. deltoides under intraspecific competition were stronger than under interspecific competition. In contrast, the effects of N deficiency on P. euramericana between intraspecific and interspecific competition were not significantly different. These results suggest that under normal N condition, P. deltoides is expected to gain an advantage in monocultures rather than in mixtures with P. euramericana. Under N deficiency, the growth performance of P. euramericana was more stable than that of P. deltoides under both cultivation modes.
  • Mikola, Juha; Silfver, Tarja; Paaso, Ulla; Possen, Boy J. M. H.; Rousi, Matti (2018)
    Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H-2 = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH4+ yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population.
  • Duan, Baoli; Paquette, Alain; Juneau, Philippe; Brisson, Jacques; Fontaine, Bastien; Berninger, Frank Alexander (2014)
    We investigated the effects of leaf color change in the fall on photosynthetic production and nitrogen resorption. Seedlings of Acer platanoides L. and A. saccharum Marsh. were grown in a shade house for 5 months in either 21 % (intermediate light, M) or 4.9 % (low light, L) of incident irradiance. After this period, a subset of the intermediate-light grown seedlings was transferred to a high-light stress treatment (H). Gas exchange, chlorophyll fluorescence, pigments, antioxidant activity, and nitrogen (N) resorption were examined at three leaf senescence stages during September and October. Our results show that plants of both species produce more anthocyanins in the H treatment. In comparison with plants grown in the L and M treatments, plants of both species in the H treatments had lower chlorophyll, carotenoid and chlorophyll fluorescence parameters (F (v)/F (m), I broken vertical bar (PSII), NPQ and ETR) at the third sampling date (October 12-18), and indicating higher levels of photoinhibition in the seedlings exposed to high light. Our results imply that autumn leaf redness is inducible and closely linked to photo-oxidative stress. However, anthocyanins did not enhance antioxidant capacity in red leaves in either species, when exposed to high light. For both species, our results showed a higher N-resorption for high-light stressed plants. We also observed that the number of abscised leaves at the second sampling dates (September 10) was higher than at the third sampling dates. The intra-leaf distribution of anthocyanin, the association between anthocyanin production and the high-light environments, the retention of red leaves, the substantial physiological gain of photosynthetic activity, as well as the links between anthocyanins and increased N resorption led us to assume that one primary role of autumn anthocyanin could be to protect the photosynthetic apparatus from photo-oxidative damage as light filters rather than as antioxidant. Another major role is to extend carbon capture and help supply the energy needed for N resorption from senescing leaves in both A. saccharum and A. Platanoides during high-light stress. Nevertheless, photoprotective capacity of anthocyanins was not able to fully compensate for photoinhibitory stress as the anthocyanins are not optimally located to efficiently reduce light within the leaves.