Browsing by Subject "Nanoparticles"

Sort by: Order: Results:

Now showing items 1-11 of 11
  • D'Amico, Carmine; Fontana, Flavia; Cheng, Ruoyu; Santos, Hélder A. (2021)
    The current situation, heavily influenced by the ongoing pandemic, puts vaccines back into the spotlight. However, the conventional and traditional vaccines present disadvantages, particularly related to immunogenicity, stability, and storage of the final product. Often, such products require the maintenance of a “cold chain,” impacting the costs, the availability, and the distribution of vaccines. Here, after a recall of the mode of action of vaccines and the types of vaccines currently available, we analyze the past, present, and future of vaccine formulation. The past focuses on conventional formulations, the present discusses the use of nanoparticles for vaccine delivery and as adjuvants, while the future presents microneedle patches as alternative formulation and administration route. Finally, we compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability, and patient-friendly design.
  • Viippola, Viljami; Yli-Pelkonen, Vesa; Järvi, Leena; Kulmala, Markku; Setälä, Heikki (2020)
    Trees and other vegetation have been advocated as a mitigation measure for urban air pollution mainly due to the fact that they passively filter particles from the air. However, mounting evidence suggests that vegetation may also worsen air quality by slowing the dispersion of pollutants and by producing volatile organic compounds that contribute to formation of ozone and other secondary pollutants. We monitored nanoparticle (>10 nm) counts along distance gradients away from major roads along paired transects across open and forested landscapes in Baltimore (USA), Helsinki (Finland) and Shenyang (China) − i.e. sites in three biomes with different pollution levels − using condensation particle counters. Mean particle number concentrations averaged across all sampling sites were clearly reduced (15 %) by the presence of forest cover only in Helsinki. For Baltimore and Shenyang, levels showed no significant difference between the open and forested transects at any of the sampling distances. This suggests that nanoparticle deposition on trees is often counterbalanced by other factors, including differing flow fields and aerosol processes under varying meteorological conditions. Similarly, consistent differences in high frequency data patterns between the transects were detected only in Helsinki. No correlations between nanoparticle concentrations and solar radiation or local wind speed as affecting nanoparticle abundances were found, but they were to some extent associated with canopy closure. These data add to the accumulating evidence according to which trees do not necessarily improve air quality in near-road environments.
  • Danielsen, Pernille Høgh; Knudsen, Kristina Bram; Štrancar, Janez; Umek, Polona; Koklič, Tilen; Garvas, Maja; Vanhala, Esa; Savukoski, Sauli; Ding, Yaobo; Madsen, Anne Mette; Jacobsen, Nicklas Raun; Weydahl, Ingrid Konow; Berthing, Trine; Poulsen, Sarah Søs; Schmid, Otmar; Wolff, Henrik; Vogel, Ulla (2020)
    Nanomaterial (NM) characteristics may affect the pulmonary toxicity and inflammatory response, including specific surface area, size, shape, crystal phase or other surface characteristics. Grouping of TiO2 in hazard assessment might be challenging because of variation in physicochemical properties. We exposed C57BL/6 J mice to a single dose of four anatase TiO2 NMs with various sizes and shapes by intratracheal instillation and assessed the pulmonary toxicity 1, 3, 28, 90 or 180 days post-exposure. The quartz DQ12 was included as benchmark particle. Pulmonary responses were evaluated by histopathology, electron microscopy, bronchoalveolar lavage (BAL) fluid cell composition and acute phase response. Genotoxicity was evaluated by DNA strand break levels in BAL cells, lung and liver in the comet assay. Multiple regression analyses were applied to identify specific TiO2 NMs properties important for the pulmonary inflammation and acute phase response. The TiO2 NMs induced similar inflammatory responses when surface area was used as dose metrics, although inflammatory and acute phase response was greatest and more persistent for the TiO2 tube. Similar histopathological changes were observed for the TiO2 tube and DQ12 including pulmonary alveolar proteinosis indicating profound effects related to the tube shape. Comparison with previously published data on rutile TiO2 NMs indicated that rutile TiO2 NMs were more inflammogenic in terms of neutrophil influx than anatase TiO2 NMs when normalized to total deposited surface area. Overall, the results suggest that specific surface area, crystal phase and shape of TiO2 NMs are important predictors for the observed pulmonary effects of TiO2 NMs.
  • Känkänen, Voitto; Seitsonen, Jani; Tuovinen, Henri Mikael; Ruokolainen, Janne; Hirvonen, Jouni; Balasubramanian, Vimalkumar; Santos, Hélder A. (2020)
    Nanoprecipitation is a straightforward method for the production of block copolymer nanoparticles for drug delivery applications. However, the effects of process parameters need to be understood to optimize and control the particle size distribution (PSD). To this end, we investigated the effects of material and process factors on PSD and morphology of nanoparticles prepared from an amphiphilic diblock copolymer, poly(ethylene oxide)-block-polycaprolactone. Using a Design of Experiments approach, we explored the joint effects of molecular weight, block length ratios, water volume fraction, stirring rate, polymer concentration and organic phase addition rate on hydrodynamic size and polydispersity index of the nanostructures and created statistical models explaining up to 94 % of the variance in hydrodynamic diameter. In addition, we performed morphological characterization by cryogenic transmission electron microscopy and showed that increasing the process temperature may favor the formation of vesicles from these polymers. We showed that the effects of process parameters are dependent on the polymer configuration and we found that the most useful parameters to fine-tune the PSD are the initial polymer concentration and the stirring rate. Overall, this study provides evidence on the joint effects of material and process parameters on PSD and morphology, which will be useful for rational design of formulation-specific optimization studies, scale-up and process controls.
  • Dissanayake, Keerthie; Nõmm, Monika; Lättekivi, Freddy; Ressaissi, Yosra; Godakumara, Kasun; Lavrits, Arina; Midekessa, Getnet; Viil, Janeli; Bæk, Rikke; Jørgensen, Malene Møller; Bhattacharjee, Sourav; Andronowska, Aneta; Salumets, Andres; Jaakma, Ülle; Fazeli, Alireza (2020)
    Extracellular vesicles (EVs) are membrane-bound biological nanoparticles (NPs) and have gained wide attention as potential biomarkers. We aimed to isolate and characterize EVs from media conditioned by individually cultured preimplantation bovine embryos and to assess their relationship with embryo quality. Presumptive zygotes were cultured individually in 60 μl droplets of culture media, and 50 μl of media were collected from the droplets either on day 2, 5 or 8 post-fertilization. After sampling, the embryo cultures were continued in the remaining media until day 8, and the embryo development was evaluated at day 2 (cleavage), day 5 (morula stage) and day 8 (blastocyst stage). EVs were isolated using qEVsingle® columns and characterized. Based on EV Array, EVs isolated from embryo conditioned media were strongly positive for EV-markers CD9 and CD81 and weakly positive for CD63 and Alix among others. They had a cup-like shape typical to EVs as analyzed by transmission electron microscopy and spherical shape in scanning electron microscopy, and hence regarded as EVs. However, the NPs isolated from control media were negative for EV markers. Based on nanoparticle tracking analysis, at day 2, the mean concentration of EVs isolated from media conditioned by embryos that degenerated after cleaving (8.25 × 108/ml) was higher compared to that of embryos that prospectively developed to blastocysts (5.86 × 108/ml, p 
  • Rahikkala, Antti Tuomas Antero; Santos, Hélder A. (2020)
    Kohdennettu nanolääke on nanokokoisen kantajahiukkasen ja lääkeainemolekyylin yhdistelmä. Tällaisten lääkkeiden etu tavanomaisiin lääkkeisiin nähden on se, että ne voivat kuljettaa lääkkeet oikeaan kudokseen tai soluun ja vapauttaa ne vasta siellä. Ideaaliset nanolääkkeet ovat yhteensopivia kudosten kanssa (bioyhteensopivia) ja biohajoavia. Ne voivat tunkeutua syvälle syöpäkudokseen ja niitä voidaan muokata siten, että ne kiinnittyvät vain tiettyihin kohdesoluihin. Ensimmäinen nanolääkesukupolvi on jo markkinoilla, ja seuraavia tutkitaan kliinisissä kokeissa.
  • Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Haeggstrom, Edward; Yliruusi, Jouko (2017)
    We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. (C) 2017 Elsevier B.V. All rights reserved.
  • Poon, Wing-Lam; Lee, Jetty Chung-Yung; Leung, Kin Sum; Alenius, Harri; El-Nezami, Hani; Karisola, Piia (2020)
    Bioactive, oxygenated metabolites of polyunsaturated fatty acids (PUFAs) are important indicators of inflammation and oxidative stress but almost nothing is known about their interactions with nanomaterials (NMs). To investigate the effects of nano-sized materials (n-TiO2, n-ZnO, n-Ag) and their bulk-sized or ionic (b-TiO2, b-ZnO, i-Ag) counterpart, we studied the status of oxidative stress and PUFA metabolism in THP-1 cells at low-toxic concentrations (
  • Martins, João Pedro; Figueiredo, Patricia; Wang, Shiqi; Espo, Erika; Celi, Elena; Martins, Beatriz; Kemell, Marianna; Moslova, Karina; Mäkilä, Ermei; Salonen, Jarno; Kostiainen, Mauri; Celia, Christian; Cerullo, Vincenzo; Viitala, Tapani; Sarmento, Bruno; Hirvonen, Jouni; Santos, Hélder A. (2022)
    Oral insulin delivery could change the life of millions of diabetic patients as an effective, safe, easy-to-use, and affordable alternative to insulin injections, known by an inherently thwarted patient compliance. Here, we designed a multistage nanoparticle (NP) system capable of circumventing the biological barriers that lead to poor drug absorption and bioavailability after oral administration. The nanosystem consists of an insulin-loaded porous silicon NP encapsulated into a pH-responsive lignin matrix, and surface-functionalized with the Fc fragment of immunoglobulin G, which acts as a targeting ligand for the neonatal Fc receptor (FcRn). The developed NPs presented small size (211 +/- 1 nm) and narrow size distribution. The NPs remained intact in stomach and intestinal pH conditions, releasing the drug exclusively at pH 7.4, which mimics blood circulation. This formulation showed to be highly cytocompatible, and surface plasmon resonance studies demonstrated that FcRn-targeted NPs present higher capacity to interact and being internalized by the Caco-2 cells, which express FcRn, as demonstrated by Western blot. Ultimately, in vitro permeability studies showed that Fc-functionalized NPs induced an increase in the amount of insulin that permeated across a Caco-2/HT29-MTX co-culture model, showing apparent permeability coefficients (P-app) of 2.37 x 10(-6) cm/s, over the 1.66 x 10(-6) cm/s observed for their non-functionalized counterparts. Overall, these results demonstrate the potential of these NPs for oral delivery of anti-diabetic drugs.
  • Azevedo, Cláudia; Pinto, Soraia; Benjakul, Sopisa; Nilsen, Jeannette; Santos, Hélder A.; Traverso, Giovanni; Andersen, Jan Terje; Sarmento, Bruno (2021)
    Diabetes mellitus is a chronic disease with an elevated risk of micro- and macrovascular complications, such as fibrosis. To prevent diabetes-associated fibrosis, the symptomatology of diabetes must be controlled, which is commonly done by subcutaneous injection of antidiabetic peptides. To minimize the pain and distress associated with such injections, there is an urgent need for non-invasive oral transmucosal drug delivery strategies. However, orally administered peptide-based drugs are exposed to harsh conditions in the gastrointestinal tract and poorly cross the selective intestinal epithelium. Thus, targeting of drugs to receptors expressed in epithelial cells, such as the neonatal Fc receptor (FcRn), may therefore enhance uptake and transport through mucosal barriers. This review compiles how in-depth studies of FcRn biology and engineering of receptor-binding molecules may pave the way for design of new classes of FcRn-targeted nanosystems. Tailored strategies may open new avenues for oral drug delivery and provide better treatment options for diabetes and, consequently, fibrosis prevention.
  • Pyykkö, Pekka; Taubert, Stefan (2022)
    The electronic structure and stability of M '@M-n systems is considered using DFT. The metal atom M ' is a rare earth, actinide, or a d transition metal, and M is a coinage (Group 11) metal. The sigma aromaticity along the M-n ring is emphasized. As a further indicator for it, the magnetically induced currents along the ring are studied, and found to be considerably larger than the aromatic pi currents in benzene. A name saturnenes is suggested for these atom-inside-ring systems. Attention is also called for the known analogous stick-inside-ring systems.