Browsing by Subject "Neonatal EEG"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Tokariev, Anton; Vanhatalo, Sampsa; Palva, J. Matias (2016)
    Objective: To assess how the recording montage in the neonatal EEG influences the detection of cortical source signals and their phase interactions. Methods: Scalp EEG was simulated by forward modeling 20-200 simultaneously active sources covering the cortical surface of a realistic neonatal head model. We assessed systematically how the number of scalp electrodes (11-85), analysis montage, or the size of cortical sources affect the detection of cortical phase synchrony. Statistical metrics were developed for quantifying the resolution and reliability of the montages. Results: The findings converge to show that an increase in the number of recording electrodes leads to a systematic improvement in the detection of true cortical phase synchrony. While there is always a ceiling effect with respect to discernible cortical details, we show that the average and Laplacian montages exhibit superior specificity and sensitivity as compared to other conventional montages. Conclusions: Reliability in assessing true neonatal cortical synchrony is directly related to the choice of EEG recording and analysis configurations. Because of the high conductivity of the neonatal skull, the conventional neonatal EEG recordings are spatially far too sparse for pertinent studies, and this loss of information cannot be recovered by re-montaging during analysis. Significance: Future neonatal EEG studies will need prospective planning of recording configuration to allow analysis of spatial details required by each study question. Our findings also advice about the level of details in brain synchrony that can be studied with existing datasets or by using conventional EEG recordings. (C) 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
  • Tokariev, Anton; Vanhatalo, Sampsa; Palva, J. Matias (ELSEVIER IRELAND LTD, 2016)
    Objective: To assess how the recording montage in the neonatal EEG influences the detection of cortical source signals and their phase interactions. Methods: Scalp EEG was simulated by forward modeling 20-200 simultaneously active sources covering the cortical surface of a realistic neonatal head model. We assessed systematically how the number of scalp electrodes (11-85), analysis montage, or the size of cortical sources affect the detection of cortical phase synchrony. Statistical metrics were developed for quantifying the resolution and reliability of the montages. Results: The findings converge to show that an increase in the number of recording electrodes leads to a systematic improvement in the detection of true cortical phase synchrony. While there is always a ceiling effect with respect to discernible cortical details, we show that the average and Laplacian montages exhibit superior specificity and sensitivity as compared to other conventional montages. Conclusions: Reliability in assessing true neonatal cortical synchrony is directly related to the choice of EEG recording and analysis configurations. Because of the high conductivity of the neonatal skull, the conventional neonatal EEG recordings are spatially far too sparse for pertinent studies, and this loss of information cannot be recovered by re-montaging during analysis. Significance: Future neonatal EEG studies will need prospective planning of recording configuration to allow analysis of spatial details required by each study question. Our findings also advice about the level of details in brain synchrony that can be studied with existing datasets or by using conventional EEG recordings. (C) 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
  • Koolen, Ninah; Oberdorfer, Lisa; Rona, Zsofia; Giordano, Vito; Werther, Tobias; Klebermass-Schrehof, Katrin; Stevenson, Nathan; Vanhatalo, Sampsa (2017)
    Objective: To develop a method for automated neonatal sleep state classification based on EEG that can be applied over a wide range of age. Methods: We collected 231 EEG recordings from 67 infants between 24 and 45 weeks of postmenstrual age. Ten minute epochs of 8 channel polysomnography (N = 323) from active and quiet sleep were used as a training dataset. We extracted a set of 57 EEG features from the time, frequency, and spatial domains. A greedy algorithm was used to define a reduced feature set to be used in a support vector machine classifier. Results: Performance tests showed that our algorithm was able to classify quiet and active sleep epochs with 85% accuracy, 83% sensitivity, and 87% specificity. The performance was not substantially lowered by reducing the epoch length or EEG channel number. The classifier output was used to construct a novel trend, the sleep state probability index, that improves the visualisation of brain state fluctuations. Conclusions: A robust EEG-based sleep state classifier was developed. It performs consistently well across a large span of postmenstrual ages. Significance: This method enables the visualisation of sleep state in preterm infants which can assist clinical management in the neonatal intensive care unit. (C) 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
  • Khazaei, Mohammad; Raeisi, Khadijeh; Croce, Pierpaolo; Tamburro, Gabriella; Tokariev, Anton; Vanhatalo, Sampsa; Zappasodi, Filippo; Comani, Silvia (2021)
    Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies-the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states-AS and QS-in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that similar to 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.
  • Stevenson, Nathan J.; Lauronen, Leena; Vanhatalo, Sampsa (2018)
    Objectives: To measure changes in the visual interpretation of the EEG by the human expert for neonatal seizure detection when reducing the number of recording electrodes. Methods: EEGs were recorded from 45 infants admitted to the neonatal intensive care unit (NICU). Three experts annotated seizures in EEG montages derived from 19, 8 and 4 electrodes. Differences between annotations were assessed by comparing intra-montage with inter-montage agreement (K). Results: Three experts annotated 4464 seizures across all infants and montages. The inter-expert agreement was not significantly altered by the number of electrodes in the montage (p = 0.685, n = 43). Reducing the number of EEG electrodes altered the seizure annotation for all experts. Agreement between the 19-electrode montage (K-19,K-19 = 0.832) was significantly higher than the agreement between 19 and 8-electrode montages (dK = 0.114; p <0.001, n = 42) or 19 and 4-electrode montages (dK = 0.113, p <0.001, n = 43). Seizure burden and number were significantly underestimated by the 4 and 8-electrode montage (p <0.001). No significant difference in agreement was found between 8 and 4-electrode montages (dK = 0.002; p = 0.07, n = 42). Conclusions: Reducing the number of EEG electrodes from 19 electrodes resulted in slight but significant changes in seizure detection. (C) 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.