Browsing by Subject "Neurodegeneration"

Sort by: Order: Results:

Now showing items 1-19 of 19
  • Oksanen, Minna; Lehtonen, Sarka; Jaronen, Merja; Goldsteins, Gundars; Hämäläinen, Riikka H.; Koistinaho, Jari (2019)
    Astrocytes are the most abundant cell type in the brain. They were long considered only as passive support for neuronal cells. However, recent data have revealed many active roles for these cells both in maintenance of the normal physiological homeostasis in the brain as well as in neurodegeneration and disease. Moreover, human astrocytes have been found to be much more complex than their rodent counterparts, and to date, astrocytes are known to actively participate in a multitude of processes such as neurotransmitter uptake and recycling, gliotransmitter release, neuroenergetics, inflammation, modulation of synaptic activity, ionic balance, maintenance of the blood–brain barrier, and many other crucial functions of the brain. This review focuses on the role of astrocytes in human neurodegenerative disease and the potential of the novel stem cell-based platforms in modeling astrocytic functions in health and in disease.
  • Lindahl, Maria; Chalazonitis, Alcmene; Palm, Erik; Pakarinen, Emmi; Danilova, Tatiana; Pham, Tuan D.; Setlik, Wanda; Rao, Meenakshi; Voikar, Vootele; Huotari, Jatta; Kopra, Jaakko; Andressoo, Jaan-Olle; Piepponen, Petteri T.; Airavaara, Mikko; Panhelainen, Anne; Gershon, Michael D.; Saarma, Mart (2020)
    Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson's disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf(-/-)), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf(-/-) mouse are much greater than in those of Cdnf(+/+) mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf(-/-) mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf(-/-) male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf(-/-) mouse brain is altered. The deficiencies of Cdnf(-/-) mice, therefore, are reminiscent of those seen in early stages of Parkinson's disease.
  • Patel, Tirth K; Habimana-Griffin, LeMoyne; Gao, Xuefeng; Xu, Baogang; Achilefu, Samuel; Alitalo, Kari; McKee, Celia A; Sheehan, Patrick W; Musiek, Erik S; Xiong, Chengjie; Coble, Dean; Holtzman, David M (BioMed Central, 2019)
    Abstract Background Alzheimer’s disease is characterized by two main neuropathological hallmarks: extracellular plaques of amyloid-β (Aβ) protein and intracellular aggregates of tau protein. Although tau is normally a soluble monomer that bind microtubules, in disease it forms insoluble, hyperphosphorylated aggregates in the cell body. Aside from its role in AD, tau is also involved in several other neurodegenerative disorders collectively called tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), some forms of frontotemporal dementia, and argyrophilic grain disease (AGD). The prion hypothesis suggests that after an initial trigger event, misfolded forms of tau are released into the extracellular space, where they spread through different brain regions, enter cells, and seeding previously normal forms. Thus understanding mechanisms regulating the clearance of extracellular tau from the CNS is important. The discovery of a true lymphatic system in the dura and its potential role in mediating Aβ pathology prompted us to investigate its role in regulating extracellular tau clearance. Methods To study clearance of extracellular tau from the brain, we conjugated monomeric human tau with a near-infrared dye cypate, and injected this labeled tau in the parenchyma of both wild-type and K14-VEGFR3-Ig transgenic mice, which lack a functional CNS lymphatic system. Following injection we performed longitudinal imaging using fluorescence molecular tomography (FMT) and quantified fluorescence to calculate clearance of tau from the brain. To complement this, we also measured tau clearance to the periphery by measuring plasma tau in both groups of mice. Results Our results show that a significantly higher amount of tau is retained in the brains of K14-VEGFR3-Ig vs. wild type mice at 48 and 72 h post-injection and its subsequent clearance to the periphery is delayed. We found that clearance of reference tracer human serum albumin (HSA) was also significantly delayed in the K14-VEGFR3-Ig mice. Conclusions The dural lymphatic system appears to play an important role in clearance of extracellular tau, since tau clearance is impaired in the absence of functional lymphatics. Based on our baseline characterization of extracellular tau clearance, future studies are warranted to look at the interaction between tau pathology and efficiency of lymphatic function.
  • Patel, Tirth K.; Habimana-Griffin, LeMoyne; Gao, Xuefeng; Xu, Baogang; Achilefu, Samuel; Alitalo, Kari; McKee, Celia A.; Sheehan, Patrick W.; Musiek, Erik S.; Xiong, Chengjie; Coble, Dean; Holtzman, David M. (2019)
    BackgroundAlzheimer's disease is characterized by two main neuropathological hallmarks: extracellular plaques of amyloid- (A) protein and intracellular aggregates of tau protein. Although tau is normally a soluble monomer that bind microtubules, in disease it forms insoluble, hyperphosphorylated aggregates in the cell body. Aside from its role in AD, tau is also involved in several other neurodegenerative disorders collectively called tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), some forms of frontotemporal dementia, and argyrophilic grain disease (AGD). The prion hypothesis suggests that after an initial trigger event, misfolded forms of tau are released into the extracellular space, where they spread through different brain regions, enter cells, and seeding previously normal forms. Thus understanding mechanisms regulating the clearance of extracellular tau from the CNS is important. The discovery of a true lymphatic system in the dura and its potential role in mediating A pathology prompted us to investigate its role in regulating extracellular tau clearance.MethodsTo study clearance of extracellular tau from the brain, we conjugated monomeric human tau with a near-infrared dye cypate, and injected this labeled tau in the parenchyma of both wild-type and K14-VEGFR3-Ig transgenic mice, which lack a functional CNS lymphatic system. Following injection we performed longitudinal imaging using fluorescence molecular tomography (FMT) and quantified fluorescence to calculate clearance of tau from the brain. To complement this, we also measured tau clearance to the periphery by measuring plasma tau in both groups of mice.ResultsOur results show that a significantly higher amount of tau is retained in the brains of K14-VEGFR3-Ig vs. wild type mice at 48 and 72h post-injection and its subsequent clearance to the periphery is delayed. We found that clearance of reference tracer human serum albumin (HSA) was also significantly delayed in the K14-VEGFR3-Ig mice.ConclusionsThe dural lymphatic system appears to play an important role in clearance of extracellular tau, since tau clearance is impaired in the absence of functional lymphatics. Based on our baseline characterization of extracellular tau clearance, future studies are warranted to look at the interaction between tau pathology and efficiency of lymphatic function.
  • El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A.; Crowther, Damian C.; Jacobs, Howard T.; Rustin, Pierre (2016)
    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease. (C) 2016 The Authors. Published by Elsevier Inc.
  • Hänninen, Joni J.; Nakajima, Madoka; Vanninen, Aleksi; Hytönen, Santtu; Rummukainen, Jaana; Koivisto, Anne M.; Jääskeläinen, Juha E.; Soininen, Hilkka; Sutela, Anna; Vanninen, Ritva; Hiltunen, Mikko; Leinonen, Ville; Rauramaa, Tuomas (2022)
    Aims: There are very few detailed post-mortem studies on idiopathic normal-pressure hydrocephalus (iNPH) and there is a lack of proper neuropathological criteria for iNPH. This study aims to update the knowledge on the neuropathology of iNPH and to develop the neuropathological diagnostic criteria of iNPH. Methods: We evaluated the clinical lifelines and post-mortem findings of 29 patients with possible NPH. Premortem cortical brain biopsies were taken from all patients during an intracranial pressure measurement or a cerebrospinal fluid (CSF) shunt surgery. Results: The mean age at the time of the biopsy was 70±8 SD years and 74±7 SD years at the time of death. At the time of death, 11/29 patients (38%) displayed normal cognition or mild cognitive impairment (MCI), 9/29 (31%) moderate dementia and 9/29 (31%) severe dementia. Two of the demented patients had only scarce neuropathological findings indicating a probable hydrocephalic origin for the dementia. Amyloid-β (Aβ) and hyperphosphorylated τ (HPτ) in the biopsies predicted the neurodegenerative diseases so that there were 4 Aβ positive/low Alzheimer’s disease neuropathological change (ADNC) cases, 4 Aβ positive/intermediate ADNC cases, 1 Aβ positive case with both low ADNC and progressive supranuclear palsy (PSP), 1 HPτ/PSP and primary age-related tauopathy (PART) case, 1 Aβ/HPτ and low ADNC/synucleinopathy case and 1 case with Aβ/HPτ and high ADNC. The most common cause of death was due to cardiovascular diseases (10/29, 34%), followed by cerebrovascular diseases or subdural hematoma (SDH) (8/29, 28%). Three patients died of a postoperative intracerebral hematoma (ICH). Vascular lesions were common (19/29, 65%). Conclusions: We update the suggested neuropathological diagnostic criteria of iNPH, which emphasize the rigorous exclusion of all other known possible neuropathological causes of dementia. Despite the first 2 probable cases reported here, the issue of “hydrocephalic dementia” as an independent entity still requires further confirmation. Extensive sampling (with fresh frozen tissue including meninges) with age-matched neurologically healthy controls is highly encouraged.
  • Svarcbahs, Reinis; Julku, Ulrika; Kilpelainen, Tommi; Kyyrö, Mirva; Jäntti, Maria; Myohänen, Timo T. (2019)
    Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.
  • Uusimaa, Johanna; Kaarteenaho, Riitta; Paakkola, Teija; Tuominen, Hannu; Karjalainen, Minna K.; Nadaf, Javad; Varilo, Teppo; Uusi-Makela, Meri; Suo-Palosaari, Maria; Pietila, Ilkka; Hiltunen, Anniina E.; Ruddock, Lloyd; Alanen, Heli; Biterova, Ekaterina; Miinalainen, Ilkka; Salminen, Annamari; Soininen, Raija; Manninen, Aki; Sormunen, Raija; Kaakinen, Mika; Vuolteenaho, Reetta; Herva, Riitta; Vieira, Paivi; Dunder, Teija; Kokkonen, Hannaleena; Moilanen, Jukka S.; Rantala, Heikki; Nogee, Lawrence M.; Majewski, Jacek; Ramet, Mika; Hallman, Mikko; Hinttala, Reetta (2018)
    A novel multi-organ disease that is fatal in early childhood was identified in three patients from two non-consanguineous families. These children were born asymptomatic but at the age of 2 months they manifested progressive multi-organ symptoms resembling no previously known disease. The main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. In the affected children, neuropathology revealed increased angiomatosis-like leptomeningeal, cortical and superficial white matter vascularisation and congestion, vacuolar degeneration and myelin loss in white matter, as well as neuronal degeneration. Interstitial fibrosis and previously undescribed granuloma-like lesions were observed in the lungs. Hepatomegaly, steatosis and collagen accumulation were detected in the liver. A whole-exome sequencing of the two unrelated families with the affected children revealed the transmission of two heterozygous variants in the NHL repeat-containing protein 2 (NHLRC2); an amino acid substitution p.Asp148Tyr and a frameshift 2-bp deletion p.Arg201GlyfsTer6. NHLRC2 is highly conserved and expressed in multiple organs and its function is unknown. It contains a thioredoxin-like domain; however, an insulin turbidity assay on human recombinant NHLRC2 showed no thioredoxin activity. In patient-derived fibroblasts, NHLRC2 levels were low, and only p.Asp148Tyr was expressed. Therefore, the allele with the frameshift deletion is likely non-functional. Development of the Nhlrc2 null mouse strain stalled before the morula stage. Morpholino knockdown of nhlrc2 in zebrafish embryos affected the integrity of cells in the midbrain region. This is the first description of a fatal, early-onset disease; we have named it FINCA disease based on the combination of pathological features that include fibrosis, neurodegeneration, and cerebral angiomatosis.
  • Savolainen, Mari H.; Albert, Katrina; Airavaara, Mikko; Myohänen, Timo T. (2017)
    Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble alpha-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.
  • McWilliams, Thomas; Barini, Erica; Pohjolan-Pirhonen, Risto; Brooks, Simon P.; Singh, François; Burel, Sophie; Balk, Kristin; Kumar, Atul; Montava-Garriga, Lambert; Prescott, Alan R.; Hassoun, Sidi Mohamed; Mouton-Liger, François; Ball, Graeme; Hills, Rachel; Knebel, Axel; Ulusoy, Ayse; Di Monte, Donato A.; Tamjar, Jevgenia; Antico, Odetta; Fears, Kyle; Smith, Laura; Brambilla, Riccardo; Palin, Eino; Valori, Miko; Eerola-Rautio, Johanna; Tienari, Pentti; Corti, Olga; Dunnett, Stephen B.; Ganley, Ian G.; Suomalainen, Anu; Muqit, Miratul M.K. (2018)
    Mutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and in vitro studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in vivo in mammals remains unknown. To address this, we generated a Parkin Ser65Ala (S65A) knock-in mouse model. We observe endogenous Parkin Ser65 phosphorylation and activation in mature primary neurons following mitochondrial depolarization and reveal this is disrupted in ParkinS65A/S65A neurons. Phenotypically, ParkinS65A/S65A mice exhibit selective motor dysfunction in the absence of any overt neurodegeneration or alterations in nigrostriatal mitophagy. The clinical relevance of our findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD. Moreover, biochemical and structural analysis demonstrates that the ParkinS65N/S65N mutant is pathogenic and cannot be activated by PINK1. Our findings highlight the central role of Parkin Ser65 phosphorylation in health and disease.
  • Cui, Hengjing; Norrbacka, Susanna Maria; Myöhänen, Timo (2022)
    The accumulation of aggregated alpha-synuclein (alpha-syn) has been identified as the primary component of Lewy bodies that are the pathological hallmarks of Parkinson's disease (PD). Several preclinical studies have shown alpha-syn aggregation, and particularly the intermediates formed during the aggregation process to be toxic to cells. Current PD treatments only provide symptomatic relief, and alpha-syn serves as a promising target to develop a disease-modifying therapy for PD. Our previous studies have revealed that a small-molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, increases alpha-syn degradation by accelerating macroautophagy (MA) leading to disease-modifying effects in preclinical PD models. However, alpha-syn is also degraded by chaperone-mediated autophagy (CMA). In the present study, we tested the effects of PREP inhibition or deletion on CMA activa-tion and alpha-syn degradation. HEK-293 cells were transfected with alpha-syn and incubated with 1 & 10 mu M KYP-2047 for 24 h. Both 1 & 10 mu M KYP-2047 increased LAMP-2A levels, induced alpha-syn degradation and reduced the expression of Hsc70, suggesting that the PREP inhibitor prevented alpha-syn aggregation by activating the CMA pathway. Similarly, KYP-2047 increased the LAMP-2A immunoreactivity and reduced the Hsc70 levels in mouse primary cortical neurons. When LAMP-2A was silenced by a siRNA, KYP-2047 increased the LC3BII/LC3BI ratio and accelerated the clearance of alpha-syn. Additionally, KYP-2047 induced CMA effectively also when MA was blocked by bafilomycin A1. Based on our results, we suggest that PREP might function as a core network node in MA-CMA crosstalk, and PREP inhibition can reduce alpha-syn levels via both main autophagy systems.
  • Svarcbahs, Reinis; Jäntti, Maria; Kilpeläinen, Tommi; Julku, Ulrika; Urvas, Lauri; Kivioja, Saara; Norrbacka, Susanna; Myöhänen, Timo (2020)
    Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurode-generative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclinl-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of deathassociated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
  • Rostami, Jinar; Jäntti, Maria; Cui, Hengjing; Rinne, Maiju K.; Kukkonen, Jyrki P.; Falk, Anna; Erlandsson, Anna; Myöhänen, Timo (2020)
    Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (alpha SYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase alpha SYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of alpha SYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular alpha SYN fibrils has not been studied before. In this study, the effect of KYP2407 on alpha SYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astmcytes. Immunostaining analysis revealed that both cell types accumulated alpha SYN PFFs intracellularly but KYP-2047 decreased intracellular alpha SYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight alpha SYN species in SH-SY5Y cell lysates, and secretion of aSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of alpha SYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular alpha SYN aggregates.
  • Eteläinen, T.; Kulmala, Soile; Svarcbahs, R.; Jäntti, M.; Myohänen, T. T. (2021)
    Oxidative stress (OS) is a common toxic feature in various neurodegenerative diseases. Therefore, reducing OS could provide a potential approach to achieve neuroprotection. Prolyl oligopeptidase (PREP) is a serine protease that is linked to neurodegeneration, as endogenous PREP inhibits autophagy and induces the accumulation of detrimental protein aggregates. As such, inhibition of PREP by a small-molecular inhibitor has provided neuroprotection in preclinical models of neurodegenerative diseases. In addition, PREP inhibition has been shown to reduce production of reactive oxygen species (ROS) and the absence of PREP blocks stress-induced ROS production. However, the mechanism behind PREP-related ROS regulation is not known. As we recently discovered PREP's physiological role as a protein phosphatase 2A (PP2A) regulator, we wanted to characterize PREP inhibition as an approach to reduce OS. We studied the impact of a PREP inhibitor, KYP-2047, on hydrogen peroxide and ferrous chloride induced ROS production and on cellular antioxidant response in HEK-293 and SHSY5Y cells. In addition, we used HEK-293 and SH-SY5Y PREP knock-out cells to validate the role of PREP on stress-induced ROS production. We were able to show that absence of PREP almost entirely blocks the stressinduced ROS production in both cell lines. Reduced ROS production and smaller antioxidant response was also seen in both cell lines after PREP inhibition by 10 mu M KYP-2047. Our results also revealed that the OS reducing mechanism of PREP inhibition is related to reduced activation of ROS producing NADPH oxidase through enhanced PP2A activation. In conclusion, our results suggest that PREP inhibition could also provide neuroprotection by reducing OS, thus broadening the scope of its beneficial effects on neurodegeneration.
  • Sweeney, Patrick; Park, Hyunsun; Baumann, Marc; Dunlop, John; Frydman, Judith; Kopito, Ron; McCampbell, Alexander; Leblanc, Gabrielle; Venkateswaran, Anjli; Nurmi, Antti; Hodgson, Robert (2017)
    A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
  • Sweeney, Patrick; Park, Hyunsun; Baumann, Marc; Dunlop, John; Frydman, Judith; Kopito, Ron; McCampbell, Alexander; Leblanc, Gabrielle; Venkateswaran, Anjli; Nurmi, Antti; Hodgson, Robert (BioMed Central, 2017)
    Abstract A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
  • Eteläinen, Tony S.; Kilpeläinen, Tommi P.; Ignatius, Adele; Auno, Samuli; De Lorenzo, Francesca; Uhari-Väänänen, Johanna K.; Julku, Ulrika H.; Myöhänen, Timo T. (2022)
    Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumu-lation of alpha-synuclein (alpha Syn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves alpha Syn-induced toxicity in various PD models by inducing autophagy and preventing alpha Syn aggregation. In this study, we wanted to study the effects of PREP inhibition on different alpha Syn species by using cell culture and in vivo models.We used Neuro2A cells with transient alpha Syn overexpression and oxidative stress or proteasomal inhibition -induced alpha Syn aggregation to assess the effect of KYP-2047 on soluble alpha Syn oligomers and on cell viability. Here, the levels of soluble alpha Syn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on alpha Syn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-alpha Syn mouse model, where the KYP-2047 treatment was initiated two-or four -weeks post injection.KYP-2047 and anle138b protected cells from alpha Syn toxicity but interestingly, KYP-2047 did not reduce soluble alpha Syn oligomers. In AAV-A53T-alpha Syn mouse model, KYP-2047 reduced significantly proteinase K-resistant alpha Syn oligomers and oxidative damage related to alpha Syn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole alpha Syn aggregation process in the pathology of PD and raise an important question about the forms of alpha Syn that are reasonable targets for PD drug therapy.
  • Yan, Xu; Uronen, Riikka-Liisa; Huttunen, Henri J. (2020)
    alpha-synuclein and Tau are proteins prone to pathological misfolding and aggregation that are normally found in the presynaptic and axonal compartments of neurons. Misfolding initiates a homooligomerization and aggregation cascade culminating in cerebral accumulation of aggregated alpha-synuclein and Tau in insoluble protein inclusions in multiple neurodegenerative diseases. Traditionally, alpha-synuclein-containing Lewy bodies have been associated with Parkinson's disease and Tau-containing neurofibrillary tangles with Alzheimer's disease and various frontotemporal dementia syndromes. However, there is significant overlap and co-occurrence of alpha-synuclein and Tau pathologies in a spectrum of neurodegenerative diseases. Importantly, alpha-synuclein and Tau can interact in cells, and their pathological conformations are capable of templating further misfolding and aggregation of each other. They also share a number of protein interactors indicating that network perturbations may contribute to chronic proteotoxic stress and neuronal dysfunction in synucleinopathies and tauopathies, some of which share similarities in both neuropathological and clinical manifestations. In this review, we focus on the protein interactions of these two pathologically important proteins and consider a network biology perspective towards neurodegenerative diseases. (C) 2018 Elsevier Ltd. All rights reserved.
  • Majander, Anna; Jurkute, Neringa; Burte, Florence; Brock, Kristain; Joao, Catarina; Huang, Houbin; Neveu, Magella m.; Chan, Choi mun; Duncan, Holly j.; Kelly, Simon; Burkitt-Wright, Emma; Khoyratty, Fadil; Lai, Yoon tse; Subash, Mala; Chinnery, Patrick f.; Bitner-Glindzicz, Maria; Arno, Gavin; Webster, Andrew r.; Moore, Anthony t.; Michaelides, Michel; Stockman, Andrew; Robson, Anthony g.; Yu-Wai-Man, Patrick (2022)
    center dot OBJECTIVE: To evaluate the pattern of vision loss and genotype-phenotype correlations in WFS1-associated optic neuropathy (WON).center dot DESIGN: Multicenter cohort study. center dot METHODS: The study involved 37 patients with WON carrying pathogenic or candidate pathogenic WFS1 variants. Genetic and clinical data were retrieved from the medical records. Thirteen patients underwent additional comprehensive ophthalmologic assessment. Deep phenotyping involved visual electrophysiology and advanced psychophysical testing with a complementary metabolomic study. Main Outcome Measures: WFS1 variants, functional and structural optic nerve and retinal parameters, and metabolomic profile.center dot RESULTS: Twenty-two recessive and 5 dominant WFS1 variants were identified. Four variants were novel. All WFS1 variants caused loss of macular retinal ganglion cells (RGCs) as assessed by optical coherence tomography (OCT) and visual electrophysiology. Advanced psychophysical testing indicated involvement of the major RGC subpopulations. Modeling of vision loss showed an accelerated rate of deterioration with increasing age. Dominant WFS1 variants were associated with abnormal reflectivity of the outer plexiform layer (OPL) on OCT imaging. The dominant variants tended to cause less severe vision loss compared with recessive WFS1 variants, which resulted in more variable phenotypes ranging from isolated WON to severe multisystem disease depending on the WFS1 alleles. The metabolomic profile included markers seen in other neurodegenerative diseases and type 1 diabetes mellitus. center dot CONCLUSIONS: WFS1 variants result in heterogenous phenotypes influenced by the mode of inheritance and the disease-causing alleles. Biallelic WFS1 variants cause more variable, but generally more severe, vision and RGC loss compared with heterozygous variants. Abnormal cleftlike lamination of the OPL is a distinctive OCT feature that strongly points toward dominant WON. (Am J Ophthalmol 2022;241: 927. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ))