Browsing by Subject "Nostoc"

Sort by: Order: Results:

Now showing items 1-8 of 8
  • Heinilä, Lassi Matti Petteri (Helsingin yliopisto, 2017)
    Cyanobacteria, also referred as blue-green algae, are abundant everywhere on earth inhabi-ting terrestrial and marine environments and living in symbiosis with several other organisms. Cyanobacteria were the first oxygenic photosynthetic organisms on earth and many species are also capable of fixing atmospheric nitrogen which makes them important primary produ-cers in many ecosystems. Cyanobacteria are nevertheless best known for producing toxic compounds. Cyanobacteria produce a variety of bioactive compounds including toxic ones. Some of these compounds have a potential as drugs. Most of these compounds are produ-ced by nonribosomal peptide synthetases and polyketide synthases. Nostoc sp. CENA543 is a cyanobacteria isolated from Brazilian wetland Pantanal. The strain was found to produce hepatptoxic nodularin, bioactive anabaenopeptins and a pre-viously unkown peptide. In this work the chemical structure and the biosynthetic gene cluster of the unkown peptide were characterized. Amount of produced nodularin was measured and biosynthetic genes of nodularin and anabaenopeptins were examined. Also the optimal growth conditions for the strain were studied. Essential methods applied in this work were liquid cromatography and mass spectromet-ry. To examine the biosynthetic genes DNA extraction methods and bioinformatic tools such as AntiSMASH, BLAST, Artemis and BioEdit were applied. The growth conditions were in-vestigated on different growth media. Bioactivity of the compounds were examined on disc diffusion assays and with the Kawabata method for enzyme activity. The results of this study show that Nostoc sp. CENA543 produces toxic amounts of no-dularin. The novel peptide group was named pseudospumigins. Six variants of pseudospu-migins were observed, the main variant being pseudospumigin A. Amino acid sequence of pseudospumigin A is Hpla-D-Hty-L-Ile-Argininal with mass of 612,4 Da. Gene clusters of nodularin and anabaenopeptin match corresponding genes of Nodularia spuimigena CCY9414. The biosynthetic genes of pseudospumigin have high resemblance to spumigin genecluster of Nodularia spuimigena CCY9414. Change in adenylation domain substrate specificity and deletion of three additional genes would axplain the difference between pseu-dospumigins and spumigins.
  • Kaasalainen, Ulla Susanna; Tuovinen, Veera; Mwachala, Geoffrey; Pellikka, Petri; Rikkinen, Jouko Kalevi (2021)
    Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma-type Nostoc and the Collema/Peltigera-type Nostoc, and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification.
  • Shishido, Tania Keiko; Popin, Rafael Vicentini; Jokela, Jouni; Wahlsten, Matti; Fiore, Marli Fatima; Fewer, David P.; Herfindal, Lars; Sivonen, Kaarina (2020)
    Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.
  • Farrar, Zoe May (Helsingin yliopisto, 2020)
    Mycosporine-like Amino Acids (MAAs) are small, secondary metabolites, with the ability to absorb UV light. They are produced by cyanobacteria to act as a sunscreen. The aim of this study was to catalogue MAA genetic and chemical diversity in strains of the cyanobacterial genus Nostoc. MAAs were detected in 21 of the 68 Nostoc strains using LC/MS. Fifty four different MAAs were detected across the Nostoc strains. Glycosylated MAAs were detected in 17 of the 21 strains with hexose being the most commonly occurring sugar. Surprisingly, two structurally distinct MAAs were detected from a lichen symbiont strain, Nostoc sp. UHCC 0926. Chemical analysis detected a theoretical methylated and glycosylated variant (m/z 583, C23H39N2O15), and a suspected tri-core variant (m/z 757, C34H53N4O15) with three chromophore rings as opposed to one which is typically found. The glycosylated MAA was predicted to have a hexenimine core which was methylated and had two hexose moieties. The tri-core consisted of 2 aminohexenone cores, one on either side of a central aminohexenimine core. An 8.3 Mb draft genome sequence was obtained to identify the MAA biosynthetic gene cluster responsible for the biosynthesis of these two unusual MAAs. This resulted in the detection of two gene clusters mysA-B-C1 and mysD-C2-C3. This gene cluster organisation was compared with those of other Nostoc strains. The gene cluster organization in Nostoc sp. UHCC 0926 was unique because it was the only strain to have two gene clusters and three mysC genes despite one of the other Nostocs having the ability to produce a tri-core MAA. The strain was cultured and harvested to allow for the extraction and purification of the target MAAs. The tri-core MAA structure was confirmed by NMR. However only a putative structure for the glycosylated MAA was made. The UV absorption spectrum of the tri-core MAA had an absorption maximum at 312 nm while the glycosylated and methylated MAA had an absorption maximum at 336 nm. The investigation into the MAA production of UHCC strains expands the known chemical and genetic diversity of MAAs produced by strains of the Nostoc genus.
  • Jokela, Jouni; Heinilä, Lassi M. P.; Shishido, Tania K.; Wahlsten, Matti; Fewer, David P.; Fiore, Marli F.; Wang, Hao; Haapaniemi, Esa; Permi, Perttu; Sivonen, Kaarina (2017)
    Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolandia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A-F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 mu M after 1 h) in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.
  • Juriado, Inga; Kaasalainen, Ulla; Jylhä, Maarit J; Rikkinen, Jouko (2019)
    We studied the genotype diversity of cyanobacterial symbionts in the predominately terricolous cyanolichen genus Peltigera (Peltigerales, Lecanoromycetes) in Estonia. Our sampling comprised 252 lichen specimens collected in grasslands and forests from different parts of the country, which represented all common Peltigera taxa in the region. The cyanobacteria were grouped according to their tRNA(Leu) (UAA) intron sequences, and mycobiont identities were confirmed using fungal ITS sequences. The studied Peltigera species associated with 34 different "Peltigera-type" Nostoc trnL genotypes. Some Peltigera species associated with one or a few trnL genotypes while others associated with a much wider range of genotypes. Mycobiont identity was the primary factor that determined the presence of the specific Nostoc genotype within the studied Peltigera thalli. However, the species-specific patterns of cyanobiont selectivity did not always reflect phylogenetic relationships among the studied fungal species but correlated instead with habitat preferences. Several taxa from different sections of the genus Peltigera were associated with the same Nostoc genotype or with genotypes in the same habitat, indicating the presence of functional guild structure in the photobiont community. Some Nostoc trnL genotypes were only found in the Peltigera species of moist and mesic forest environments, while another set of Nostoc genotypes was typically found in the Peltigera species of xeric habitats. Some Nostoc trnL genotypes were only found in the Peltigera taxa that are common on alvars and may have specialized to living in this unusual and threatened habitat type. (C) 2018 Elsevier Ltd and British Mycological Society. All rights reserved.
  • Humisto, Anu Karoliina; Jokela, Jouni Kalevi; Liu, Liwei; Wahlsten, Matti Per-Vilhelm; Wang, Hao; Permi, Perttu Esko Ilari; Machado, João Paulo; Antunes, Agostinho; Fewer, David Peter; Sivonen, Anna Kaarina (2018)
    Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans-AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from Anabaena sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by trans-AT PKSs of cyanobacteria and proteobacteria. IMPORTANCE Many of the drugs in use today originate from natural products. New candidate compounds for drug development are needed due to increased drug resistance. An increased knowledge of the biosynthesis of bioactive compounds can be used to aid chemical synthesis to produce novel drugs. Here, we show that a terrestrial axenic culture of Nostoc cyanobacterium produces swinholides, which have been previously found only from marine sponge or samples related to them. Swinholides are polyketides with a 2-fold axis of symmetry, and they are potent cytotoxins that disrupt the actin cytoskeleton. We describe the biosynthesis gene clusters of swinholide from Nostoc cyanobacteria, as well as the related cytotoxic and antifungal scytophycin from Anabaena cyanobacteria, and we study the evolution of their trans-AT polyketide synthases. Interestingly, swinholide is closely related to misakinolide produced by a symbiotic heterotrophic proteobacterium, demonstrating that bacteria belonging to two distantly related phyla and different habitats can produce similar natural products.