Browsing by Subject "Nrf2"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Bousquet, Jean; Haahtela, Tari; Blain, Hubert; Czarlewski, Wienczyslawa; Zuberbier, Torsten; Bedbrook, Anna; Cruz, Alvaro A.; Fonseca, Joao A.; Klimek, Ludger; Kuna, Piotr; Samolinski, Boleslaw; Valiulis, Arunas; Lemaire, Antoine; Anto, Josep M. (2022)
    Vaccination is a highly effective preventive measure against COVID-19. However, complementary treatments are needed to better control the disease. Fermented vegetables and spices, agonists of the antioxidant transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and TRPA1/V1 channels (Transient Receptor Potential Ankyrin 1 and Vanillin 1), may help in the control of COVID-19. Some preliminary clinical trials suggest that curcumin (spice) can prevent some of the COVID-19 symptoms. Before any conclusion can be drawn and these treatments recommended for COVID-19, the data warrant confirmation. In particular, the benefits of the foods need to be assessed in more patients, through research studies and large trials employing a double-blind, placebo-controlled design.
  • Bousquet, Jean; Le Moing, Vincent; Blain, Hubert; Czarlewski, Wienczyslawa; Zuberbier, Torsten; Torre, Raphael de la; Lozano, Nieves Pizarro; Reynes, Jacques; Bedbrook, Anna; Cristol, Jean-Paul; Cruz, Alvaro A.; Fiocchi, Alessandro; Haahtela, Tari; Iaccarino, Guido; Klimek, Ludger; Kuna, Piotr; Melén, Erik; Mullol, Joaquim; Samolinski, Boleslaw; Valiulis, Arunas; Anto, Josep M. (2021)
    COVID-19 is described in a clinical case involving a patient who proposed the hypothesis that Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-interacting nutrients may help to prevent severe COVID-19 symptoms. Capsules of broccoli seeds containing glucoraphanin were being taken before the onset of SARS-CoV-2 infection and were continued daily for over a month after the first COVID-19 symptoms. They were found to reduce many of the symptoms rapidly and for a duration of 6-12 h by repeated dosing. When the patient was stable but still suffering from cough and nasal obstruction when not taking the broccoli capsules, a double-blind induced cough challenge confirmed the speed of onset of the capsules (less than 10 min). A second clinical case with lower broccoli doses carried out during the cytokine storm confirmed the clinical benefits already observed. A third clinical case showed similar effects at the onset of symptoms. In the first clinical trial, we used a dose of under 600 mmol per day of glucoraphanin. However, such a high dose may induce pharmacologic effects that require careful examination before the performance of any study. It is likely that the fast onset of action is mediated through the TRPA1 channel. These experimental clinical cases represent a proof-of-concept confirming the hypothesis that Nrf2interacting nutrients are effective in COVID-19. However, this cannot be used in practice before the availability of further safety data, and confirmation is necessary through proper trials on efficacy and safety.
  • Tomasovic, Ana; Kurrle, Nina; Wempe, Frank; De-Zolt, Siike; Scheibe, Susan; Koli, Katri; Serchinger, Martin; Schnuetgen, Frank; Sueruen, Duran; Sterner-Kock, Anja; Weissmann, Norbert; von Meichner, Harald (2017)
    Latent transforming growth factor beta binding protein 4 (LTBP4) belongs to the fibrillin/LTBP family of proteins and plays an important role as a structural component of extracellular matrix (ECM) and local regulator of TGF beta signaling. We have previously reported that Ltbp4S knock out mice (Ltbp4S-/-) develop centrilobular emphysema reminiscent of late stage COPD, which could be partially rescued by inactivating the antioxidant protein Sestrin 2 (Sesn2). More recent studies showed that Sesn2 knock out mice upregulate Pdgfr beta-controlled alveolar maintenance programs that protect against cigarette smoke induced pulmonary emphysema. Based on this, we hypothesized that the emphysema of Ltbp4S-/- mice is primarily caused by defective Pdgfr beta signaling. Here we show that LTBP4 induces Pdgfr beta signaling by inhibiting the antioxidant Nr12/Keap1 pathway in a TGF beta-dependent manner. Overall, our data identified Ltbp4 as a major player in lung remodeling and injury repair. (C) 2016 The Authors. Published by Elsevier B.V.
  • ARIA Grp; the ARIA group; Bousquet, Jean; Cristol, Jean-Paul; Czarlewski, Wienczyslawa; Haahtela, Tari; Erhola, Marina; Koskinen, Seppo; Kuitunen, Mikael; Strandberg, Timo; Toppila-Salmi, Sanna; Von Hertzen, Leena (2020)
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  • Hintsala, Hanna-Riikka; Jokinen, Elina; Haapasaari, Kirsi-Maria; Moza, Monica; Ristimaki, Ari; Soini, Ylermi; Koivunen, Jussi; Karihtala, Peeter (2016)
    Background/Aim: Increased expression and prognostic significance of major redox regulator nuclear factor erythroid-2-related factor (Nrf2) is recognized in many cancers. Our aim was to investigate the role of oxidative stress markers in melanoma. Materials and Methods: We characterized the immunohistochemical expression of Nrf2, kelch-like ECH-associated protein 1 (Keap1), BRAF(V600E), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine in 36 nevi, 14 lentigo maligna and 71 malignant melanomas. We measured Nrf2 expression in melanoma cell lines and conducted cytotoxicity assays combining BRAF/NRAS ablation and H2O2 treatment. Results: Nuclear Nrf2 expression in melanoma correlated with deeper Breslow (p
  • Ruotsalainen, Anna-Kaisa; Lappalainen, Jari P.; Heiskanen, Emmi; Merentie, Mari; Sihvola, Virve; Näpänkangas, Juha; Lottonen-Raikaslehto, Line; Kansanen, Emilia; Adinolfi, Simone; Kaarniranta, Kai; Ylä-Herttuala, Seppo; Jauhiainen, Matti; Pirinen, Eija; Levonen, Anna-Liisa (2019)
    Aims Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR-/-), and LDLR-/- mice expressing apoB-100 only (LDLR-/- ApoB(100/100)) having a humanized lipoprotein profile. Methods and results LDLR-/- mice were fed a high-fat diet (HFD) for 6 or 12weeks and LDLR(-/-)ApoB(100/100) mice a regular chow diet for 6 or 12months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR-/- mice reduced total plasma cholesterol after 6weeks of HFD and triglycerides in LDLR(-/-)ApoB(100/100) mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR(-/-)ApoB(100/100) mice as it increased plaque calcification. Moreover, approximate to 36% of Nrf2(-/-)LDLR(-/-)ApoB(100/100) females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR(-/-)ApoB(100/100) female mice at age of 12months. Conclusions Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR(-/-)ApoB(100/100) mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.