Browsing by Subject "OH RADICALS"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Wang, Sainan; Wu, Runrun; Berndt, Torsten; Ehn, Mikael; Wang, Liming (2017)
    Aromatic hydrocarbons contribute significantly to tropospheric ozone and secondary organic aerosols (SOA). Despite large efforts in elucidating the formation mechanism of aromatic-derived SOA, current models still substantially underestimate the SOA yields when comparing to field measurements. Here we present a new, up to now undiscovered pathway for the formation of highly oxidized products from the OH-initiated oxidation of alkyl benzenes based on theoretical and experimental investigations. We propose that unimolecular H-migration followed by O-2-addition, a so-called autoxidation step, can take place in bicyclic peroxy radicals (BPRs), which are important intermediates of the OH -initiated oxidation of aromatic compounds. These autoxidation steps lead to the formation of highly oxidized multifunctional compounds (HOMs), which are able to form SOA. Our theoretical calculations suggest that the intramolecular H-migration in BPRs of substituted benzenes could be fast enough to compete with bimolecular reactions with HO2 radicals or NO under atmospheric conditions. The theoretical findings are experimentally supported by flow tube studies using chemical ionization mass spectrometry to detect the highly oxidized peroxy radical intermediates and closed-shell products. This new unimolecular BPR route to form HOMs in the gas phase enhances our understanding of the aromatic oxidation mechanism, and contributes significantly to a better understanding of aromatic-derived SOA in urban areas.
  • Lambe, Andrew T.; Krechmer, Jordan E.; Peng, Zhe; Casar, Jason R.; Carrasquillo, Anthony J.; Raff, Jonathan D.; Jimenez, Jose L.; Worsnop, Douglas R. (2019)
    Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (HO2), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (O-3) at), = 254 nm, photolysis of H2O at), = 185 nm, and via reactions of O(D-1) with H2O and nitrous oxide (N2O); O(D-1) is formed via photolysis of O-3 at = 254 nm and/or N2O at = 185 nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of HO2 and NO followed by the reaction NO + HO2 -> NO2 + OH. We present experimental and model characterization of the OH exposure and NO, levels generated via photolysis of C3 alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (7, = 254 to 369 nm) and organic nitrite concentration (0.5 to 20 ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of a-Pinene to HO, and NO, obtained using both isopropyl nitrite and O-3 + H2O + N2O as the radical precursors.
  • Iyer, Siddharth; Rissanen, Matti P.; Kurtén, Theo (2019)
    Peroxy (RO2) and alkoxy (RO) radicals are prototypical intermediates in any hydrocarbon oxidation. In this work, we use computational methods to (1) study the mechanism and kinetics of the RO2 + OH reaction for previously unexplored “R” structures (R = CH(O)CH2 and R = CH3C(O)) and (2) investigate a hitherto unaccounted channel of molecular growth, R′O2 + RO. On the singlet surface, these reactions rapidly form ROOOH and R′OOOR adducts, respectively. The former decomposes to RO + HO2 and R(O)OH + O2 products, while the main decomposition channel for the latter is back to the reactant radicals. Decomposition rates of R′OOOR adducts varied between 103 and 0.015 s–1 at 298 K and 1 atm. The most long-lived R′OOOR adducts likely account for some fraction of the elemental compositions detected in the atmosphere that are commonly assigned to stable covalently bound dimers.