Browsing by Subject "OPA1 MUTATIONS"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Amini, Poorya; Stojkov, Darko; Felser, Andrea; Jackson, Christopher B.; Courage, Carolina; Schaller, Andre; Gelman, Laurent; Soriano, Maria Eugenia; Nuoffer, Jean-Marc; Scorrano, Luca; Benarafa, Charaf; Yousefi, Shida; Simon, Hans-Uwe (2018)
    Optic atrophy 1 (OPA1) is a mitochondrial inner membrane protein that has an important role in mitochondrial fusion and structural integrity. Dysfunctional OPA1 mutations cause atrophy of the optic nerve leading to blindness. Here, we show that OPA1 has an important role in the innate immune system. Using conditional knockout mice lacking Opa1 in neutrophils (Opa1(N Delta)), we report that lack of OPA1 reduces the activity of mitochondrial electron transport complex I in neutrophils. This then causes a decline in adenosine-triphosphate (ATP) production through glycolysis due to lowered NAD(+) availability. Additionally, we show that OPA1-dependent ATP production in these cells is required for microtubule network assembly and for the formation of neutrophil extracellular traps. Finally, we show that Opa1(N Delta) mice exhibit a reduced antibacterial defense capability against Pseudomonas aeruginosa.
  • Majander, Anna; Joao, Catarina; Rider, Andrew T.; Henning, G. Bruce; Votruba, Marcela; Moore, Anthony T.; Yu-Wai-Man, Patrick; Stockman, Andrew (2017)
    PURPOSE. Progressive retinal ganglion cell (RGC) loss is the pathological hallmark of autosomal dominant optic atrophy (DOA) caused by pathogenic OPA1 mutations. The aim of this study was to conduct an in-depth psychophysical study of the visual losses in DOA and to infer any selective vulnerability of visual pathways subserved by different RGC subtypes. METHODS. We recruited 25 patients carrying pathogenic OPA1 mutations and age-matched healthy individuals. Spatial contrast sensitivity functions (SCSFs) and chromatic contrast sensitivity were quantified, the latter using the Cambridge Colour Test. In 11 patients, long (L) and short (S) wavelength-sensitive cone temporal acuities were measured as a function of target illuminance, and L-cone temporal contrast sensitivity (TCSF) as a function of temporal frequency. RESULTS. Spatial contrast sensitivity functions were abnormal, with the loss of sensitivity increasing with spatial frequency. Further, the highest L-cone temporal acuity fell on average by 10 Hz and the TCSFs by 0.66 log(10) unit. Chromatic thresholds along the protan, deutan, and tritan axes were 8, 9, and 14 times higher than normal, respectively, with losses increasing with age and S-cone temporal acuity showing the most significant age-related decline. CONCLUSIONS. Losses of midget parvocellular, parasol magnocellular, and bistratified koniocellular RGCs could account for the losses of high spatial frequency sensitivity and protan and deutan sensitivities, high temporal frequency sensitivity, and S-cone temporal and tritan sensitivities, respectively. The S-cone-related losses showed a significant deterioration with increasing patient age and could therefore prove useful biomarkers of disease progression in DOA.