Browsing by Subject "OVARIAN-CANCER CELLS"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vitor E.; Barbier, Michael; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph (2016)
    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono-and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models.
  • Korvala, Johanna; Jee, Kowan; Porkola, Emmi; Almangush, Alhadi; Mosakhani, Neda; Bitu, Carolina; Cervigne, Nilva K.; Zandonadi, Flavia S.; Meirelles, Gabriela V.; Paes Leme, Adriana Franco; Coletta, Ricardo D.; Leivo, Ilmo; Salo, Tuula (2017)
    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated "Focal adhesion" and "ECM-receptor interaction" as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren't significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.
  • Koski, Anniina; Karli, Eerika; Kipar, Anja; Escutenaire, Sophie; Kanerva, Anna-Maija; Hemminki, Akseli (2013)
  • Rajecki, Maria; Sarparanta, Mirkka; Hakkarainen, Tanja; Tenhunen, Mikko; Diaconu, Iulia; Kuhmonen, Venla; Kairemo, Kalevi; Kanerva, Anna-Maija; Airaksinen, Anu J.; Hemminki, Akseli (2012)