Browsing by Subject "OXIDE THIN-FILMS"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Kukli, Kaupo; Kemell, Marianna; Vehkamäki, Marko; Heikkilä, Mikko J.; Mizohata, Kenichiro; Kalam, Kristjan; Ritala, Mikko; Leskelä, Markku; Kundrata, Ivan; Frohlich, Karol (2017)
    Thin solid films consisting of ZrO2 and Ta2O5 were grown by atomic layer deposition at 300 degrees C. Ta2O5 films doped with ZrO2, TaZr2.75O8 ternary phase, or ZrO2 doped with Ta2O5 were grown to thickness and composition depending on the number and ratio of alternating ZrO2 and Ta2O5 deposition cycles. All the films grown exhibited resistive switching characteristics between TiN and Pt electrodes, expressed by repetitive current-voltage loops. The most reliable windows between high and low resistive states were observed in Ta2O5 films mixed with relatively low amounts of ZrO2, providing Zr to Ta cation ratio of 0.2. (C) 2017 Author(s).
  • Mattinen, Miika; Popov, Georgi; Vehkamäki, Marko; King, Peter J.; Mizohata, Kenichiro; Jalkanen, Pasi; Räisänen, Jyrki; Leskelä, Markku; Ritala, Mikko (2019)
    Semiconducting two-dimensional (2D) materials are studied intensively because of their promising performance in diverse applications from electronics to energy storage and catalysis. Recently, HfS2 and ZrS2 have emerged as potential rivals for the commonly studied 2D semiconductors such as MoS2 and WSe2, but their use is hindered by the difficulty of producing continuous films. Herein, we report the first atomic layer deposition (ALD) processes for HfS2 and ZrS2 using HfCl4 and ZrCl4 with H2S as the precursors. We demonstrate the deposition of uniform and continuous films on a range of substrates with accurately controlled thicknesses ranging from a few monolayers to tens of nanometers. The use of semiconductor industry-compatible precursors and temperatures (approximately 400 degrees C) enables facile upscaling of the process. The deposited HfS2 and ZrS2 films are crystalline, smooth, and stoichiometric with oxygen as the main impurity. As an important step toward applications of HfS2 and ZrS2, we show that their sensitivity toward oxidation can be overcome by minimizing the impurities in the reactor and by depositing a protective AlxSiyOz layer on the top without a vacuum break. Finally, we demonstrate HfS2 and ZrS2 photodetectors exhibiting good performance and stable operation in ambient conditions. Photoresponsivity comparable to thin films or even single flakes of HfS2 or ZrS2 deposited at much higher temperatures is achieved, although the response speed seems to be limited by photogating, as is common for 2D photodetectors. We expect the first ALD processes for HfS2 and ZrS2 to enable further exploration of these materials for various semiconductor applications.
  • Heikkilä, Mikko J.; Hämäläinen, Jani; Puukilainen, Esa; Leskelä, Markku; Ritala, Mikko (2020)
    IrO2 is an important material in numerous applications ranging from catalysis to the microelectronics industry, but despite this its behaviour upon annealing under different conditions has not yet been thoroughly studied. This work provides a detailed investigation of the annealing of IrO2 thin films using in situ high-temperature X-ray diffraction and X-ray reflectivity (HTXRR) measurements from room temperature up to 1000 degrees C in oxygen, nitrogen, forming gas and vacuum. Complementary ex situ scanning electron microscopy and atomic force microscopy measurements were conducted. The combined data show the dependencies of crystalline properties and surface morphology on the annealing temperature and atmosphere. The reduction of IrO2 to Ir takes place at a temperature as low as 150 degrees C in forming gas, but in oxygen IrO2 is stable up to 800 degrees C and evaporates as a volatile oxide at higher temperatures. The IrO2 crystallite size remains constant in oxygen up to 400 degrees C and increases above that, while in the more reducing atmospheres the Ir crystallites grow continuously above the phase-change temperature. The role of HTXRR in the analysis is shown to be important since its high sensitivity allows one to observe changes taking place in the film at temperatures much below the phase change.
  • Keskivali, Laura; Putkonen, Matti; Puhakka, Eini; Kenttä, Eija; Kint, Jeroen; Ramachandra, Ranjith K.; Detavernier, Christophe; Simell, Pekka (2018)
    Novel coating materials are constantly needed for current and future applications in the area of microelectronics, biocompatible materials, and energy-related devices. Molecular layer deposition (MLD) is answering this cry and is an increasingly important coating method for organic and hybrid organic-inorganic thin films. In this study, we have focused on hybrid inorganic-organic coatings, based on trimethylaluminum, monofunctional aromatic precursors, and ring-opening reactions with ozone. We present the MLD processes, where the films are produced with trimethylaluminum, one of the three aromatic precursors (phenol, 3-(trifluoromethyl) phenol, and 2-fluoro-4-(trifluoromethyl)benzaldehyde), ozone, and the fourth precursor, hydrogen peroxide. According to the in situ Fourier-transform infrared spectroscopy measurements, the hydrogen peroxide reacts with the surface carboxylic acid group, forming a peroxyacid structure (C(O)-O-OH), in the case of all three processes. In addition, molecular modeling for the processes with three different aromatic precursors was carried out. When combining these modeling results with the experimental research data, new interesting aspects of the film growth, reactions, and properties are exploited.