Browsing by Subject "Oat"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Yang, Zhen; Piironen, Vieno; Lampi, Anna-Maija (2019)
    The aim of the study was to investigate the occurrence and formation of peroxygenase catalysed non-volatile oxidised fatty acids (NVOFAs), especially epoxy and hydroxy fatty acids, which potentially provide off-flavours in oat. A method based on extraction of NVOFAs using accelerated solvent extraction and analysis by UHPLC-ELSD/MS was developed. Hydroxy and epoxy fatty acids from oleic and linoleic acids were present as major NVOFAs in non-heat treated (NHT) oat products, and the contents increased markedly during storage. In a controlled storage experiment, NVOFA contents in NHT oat flours increased to 1700-2000 mu g/g, whereas in heat-treated samples, only to 200-400 mu g/g. Epoxy fatty acids seemed to be the first products that occurred, followed by hydroxy fatty acids and minor NVOFAs. The formation of NVOFAs was related to lipase catalysed lipid hydrolysis and the formation of volatile lipid oxidation products. Inactivation of lipid degrading enzymes is crucial to producing stable oat products.
  • Ramos-Diaz, Jose Martin; Kantanen, Katja Annika; Edelmann, Minnamari; Suhonen, Heikki; Sontag-Strohm, Tuula; Jouppila, Kirsi; Piironen, Vieno (2022)
    A new generation of plant-based texturized meat analogues attempts to boost the consumption of dietary fiber. In the present study, oat fiber concentrate (OFC) and pea protein isolate (PPI) were combined (30:70; 50:50; 70:30) and processed with high-moisture extrusion (long cooling die temperature [LCDT]: 40, 60 and 80 °C; screw speed [SS]: 300, 400 and 500 rpm) to obtain meat-mimicking fibrous meat analogues (FMAs). The results showed that OFC reduced the structural strength (e.g., hardness, chewiness) of the FMAs, whereas LCDT strengthened the structure. Microtomography imaging revealed that FMAs containing more OFC presented smaller void thickness, thus reducing the FMAs' water holding capacity. An in-vitro gastrointestinal model showed that the extractability and viscosity of β-glucan were well preserved, particularly at low LCDT. Overall, it was possible to add substantial amounts of OFC (30–50%) to FMAs while maintaining fibrous meat-mimicking structures and retaining the oat fiber's viscous properties.
  • Chen, Yike Jr (Helsingin yliopisto, 2018)
    Cereal β-glucan, or (1→3)(1→4)-β-D-glucan, has unique viscous and gelling properties, which are related to its physiological effects. The increased viscosity in human gastrointestinal tract by β-glucan is considered a key factor for its health benefits. However, the possible gelling ability of β-glucan in human intestine and its relation to the physiological functionality have not been investigated. The aims of this study were to investigate the possible structure formation of β-glucan at physiological conditions and to understand gelation difference between oat and barley β-glucan (OBG and BBG, respectively). Additionally, the effects of phytate and molecular weight (MW) on structure formation of β-glucan were studied. Oat (ROBG14, ROBG22) and barley bran concentrates (RBBG18) were used for in vitro studies in upper gut model. OBG14 was extracted from oat concentrates and used for further producing phytate-removed OBG (PR-OBG) or enzymatically degraded OBG (ENZ-OBG). The effect of phytate or molecular weight on gelation of beta-glucan was studied by comparing the gelation of PR-OBG or ENZ-OBG to OBG14 after 2 h and 1 d. The effect of β-glucan source was studied with medium viscosity oat (MOBG) and barley (MBBG) β-glucan with same molecular weight and concentration on day 1 and day 4. The extracted samples were first dissolved at physiological T 37°C for 2 h and the gel properties of the samples were measured with oscillatory measurements. OBG showed more structure formation than BBG at low concentrations in both studies with in vitro digestion model and extracted β-glucan samples at physiological temperature. In vitro RBBG18 (β-glucan content of the in vitro extract 0.6%) showed liquid-like behavior and no hysteresis obtained, indicating no structure formation. ROBG14 (β-glucan content 0.5%) and ROBG22 (β-glucan content 0.6%) showed entangled network, with similar crossover frequencies, 0.07 and 0.1 Hz, respectively. 1.5% MOBG showed liquid-like behavior on day 1, but storage modulus (G’) increased during storage. The undissolved particles in watery medium of MBBG indicated 37°C was not enough for partial dissolution which could lead to gel. At the same concentration (1%), both PR-OBG and OBG14 showed weak gel structure, with slightly higher G’ in PR-OBG. This indicated that phytate is not the reason for better gelation of OBG than BBG, which was hypothesized due to higher residual phytate in OBG than BBG. ENZ-OBG (0.7%) had lower G’ than OBG14 (0.7%), which indicated more structure formed in higher MW OBG at 2 h. To conclude, OBG is more prone to structure formation than BBG at physiological conditions. Phytate was not the reason for better gelation of OBG than BBG.
  • Yang, Zhen; Piironen, Vieno Irene; Lampi, Anna-Maija (2017)
    The aim was to study lipase, lipoxygenase (LOX) and peroxygenase (PDX) activities in oat and faba bean samples to be able to evaluate their potential in formation of lipid-derived off-flavours. Lipase and LOX activities were measured by spectroscopy, and PDX activities via the formation of epoxides. An ultra-high performance liquid chromatography method was developed to study the formation of fatty acid epoxides. The epoxides of esters were measured by gas chromatography. Mass spectroscopy was used to verify the identity of the epoxides. Both oat and faba bean possessed high lipase activities. In faba bean, LOX catalysed the formation of hydroperoxides, whose break-down products are the likely cause of off-flavours. Since oat had low LOX activity, autoxidation is needed to initiate lipid oxidation. Oat had high PDX activity, which is able to convert hydroperoxides to epoxy and hydroxy fatty acids that could contribute significantly to off-flavours. PDX activity in the faba bean was low. Thus, in faba bean volatile lipid oxidation products could rapidly be formed by LOX, whereas in oat reactions are slower due to the need of autoxidation prior to further reactions.
  • Mäkelä, Noora; Sontag-Strohm, Tuula; Olin, Miikka; Piironen, Vieno (2020)
    Oat has gained interest due to its high nutritional value. When utilising oat fractions rich in dietary fibre, their inositol phosphate (InsP, including phytate) content is considerably high due to the lack of active phytase in the kilned oat ingredients. The high InsP content is linked to decreased mineral absorption in the gut, but the mineral-binding ability of InsPs also results in antioxidativity and a decrease in starch hydrolysis, thus lowering glycaemic response. This study aimed to further develop an anion exchange liquid chromatographic method for quantification of different InsP forms from oat products and to study the changes in the InsP contents resulting from the differences in the ingredients or processes. The method was applicable for quantifying such InsP forms that can effectively bind minerals. The InsPs were stable at moderate temperatures and in the oat baking process, but a significant degradation occurred during the high-temperature treatments, extrusion, and bacterial fermentation.
  • Valoppi, Fabio; Wang, Yu-Jie; Alt, Giulia; Peltonen, Leena; Mikkonen, Kirsi S. (2021)
    Among different cereals, oat is becoming more popular due to its unique composition and health benefits. The increase in oat production is associated with an increase in related side streams, comprising unutilized biomass that is rich in valuable components, such as polysaccharides, proteins, and antioxidants. To valorize such biomass, it is fundamental that side streams enter back into the food production chain, in respect of the circular economy model. Here, we propose the use of soluble and insoluble oat-production side-stream in suspensions and emulsions, avoiding any further extraction, fractionation, and/or chemical derivatization. Our approach further increases the value of these side streams. To this aim, we first studied the effect of thermal and mechanical processes on the behavior and properties of both soluble and insoluble oat side-stream fractions in water and at air/water interface. Then, we characterized the emulsifying and stabilizing abilities of these materials in oil-in-water emulsions. Interestingly, we found that the insoluble fraction was able to form stable suspensions and emulsions after mechanical treatment. The oil droplets in the emulsions were stabilized by anchoring at the surface of the insoluble particles. On the other hand, the soluble fraction formed only stable viscous solutions. Finally, we demonstrated that the two fractions can be combined to increase the storage stability of the resulting emulsion. Our results highlight that oat production side streams can be used as novel bio-based emulsifiers, showing the great potential behind the underutilized cereal-side-stream biomass.
  • Mäkelä, Noora; Brinck, Outi; Sontag-Strohm, Tuula (2020)
    The physiological functionality of cereal beta-glucan (beta-glucan) has been mainly attributed to its ability to form viscous solutions in the gastrointestinal (GI) tract. The viscosity is dependent on the concentration, extractability and molecular weight of beta-glucan, and to enable maximal functionality, these factors should therefore be acknowledged and their role in the physiological functionality of cereal beta-glucan further studied. An in vitro GI simulation with separate oral, gastric and small intestine phases was used to model the state of beta-glucan from various oat products in the GI tract. A rather large variation (from 26% to 99%) was observed in the extractabilities between product categories, with the highest extractabilities observed in spoonable products. The viscosities also varied highly within categories. When the comparison was done at similar concentration levels, the highest viscosities were observed in the products produced through dry processes, and moisture content during processing was suggested to be essential to the extent of beta-glucan degradation. The viscosity in samples that were likely to exhibit enzymatic activity was shown to be rather low, and thus the physiological functionality of beta-glucan may be threatened if the product also contains grain ingredients other than kiln-dried oat. Clear differences were observed in the functionality of beta-glucan in the GI tract model depending on a product type, and these were explained by differences in ingredients and processes. However, further studies are needed to specify the influence of each factor and to clarify the factors determining the physiological functionality of beta-glucan in food products.