Browsing by Subject "Olivine"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Heinonen, Jussi S.; Luttinen, Arto V.; Spera, Frank J.; Bohrson, Wendy A. (2019)
    Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from similar to 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., epsilon(Nd) from -16 to +2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources (epsilon(Nd) up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (delta O-18 = 4.4-5.2%; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher delta O-18 (6.2-7.5%; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2-6.1%, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, delta O-18 correlates positively with enrichments in large-ion lithophile elements (especially K) and Os-187. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
  • Heinonen, Jussi S.; Luttinen, Arto V.; Whitehouse, M.J. (2018)
    Karoo continental flood basalt (CFB) province is known for its highly variable trace element and isotopic composition, often attributed to the involvement of continental lithospheric sources. Here, we report oxygen isotopic compositions measured with secondary ion mass spectrometry for hand-picked olivine phenocrysts from similar to 190 to 180 Ma CFBs and intrusive rocks from Vestfjella, western Dronning Maud Land, that form an Antarctic extension of the Karoo province. The Vestfjella lavas exhibit heterogeneous trace element and radiogenic isotope compositions (e.g., epsilon(Nd) from -16 to +2 at 180 Ma) and the involvement of continental lithospheric mantle and/or crust in their petrogenesis has previously been suggested. Importantly, our sample set also includes rare primitive dikes that have been derived from depleted asthenospheric mantle sources (epsilon(Nd) up to + 8 at 180 Ma). The majority of the oxygen isotopic compositions of the olivines from these dike rocks (delta O-18 = 4.4-5.2%; Fo = 78-92 mol%) are also compatible with such sources. The olivine phenocrysts in the lavas, however, are characterized by notably higher delta O-18 (6.2-7.5%; Fo = 70-88 mol%); and one of the dike samples gives intermediate compositions (5.2-6.1%, Fo = 83-87 mol%) between the other dikes and the CFBs. The oxygen isotopic compositions do not correlate with radiogenic isotope compositions susceptible to crustal assimilation (Sr, Nd, and Pb) or with geochemical indicators of pyroxene-rich mantle sources. Instead, delta O-18 correlates positively with enrichments in large-ion lithophile elements (especially K) and Os-187. We suggest that the oxygen isotopic compositions of the Vestfjella CFB olivines primarily record large-scale subduction-related metasomatism of the sub-Gondwanan mantle (base of the lithosphere or deeper) prior to Karoo magmatism. The overall influence of such sources to Karoo magmatism is not known, but, in addition to continental lithosphere, they may be responsible for some of the geochemical heterogeneity observed in the CFBs.
  • Heinonen, Jussi S.; Fusswinkel, Tobias (2017)
    Nickel contents and Mn/Fe in olivine phenocrysts have been suggested to reflect the mineral composition of the mantle source of the host magma. This hypothesis is tested here against a well-characterized suite of meimechitic (or Ti-rich komatiitic) dikes from the Antarctic extension of the Jurassic ~180 Ma Karoo large igneous province. The presented trace element data on Fo82–92 olivines show relatively high Ni (2430–3570 ppm) and low 100*Mn/Fe (1.32–1.5; Mn = 890–1570 ppm), compatible with pyroxenite-rich sources (Xpx = 37–75%). Many other mantle source indicators (parental melt MgO and whole-rock Zn/Fe, MgO/CaO, FC3MS, Zr/Y vs. Nb/Y, and radiogenic isotope compositions) suggest dominantly or solely peridotitic mantle sources, however. Therefore, the measured high Ni and low Mn/Fe are likely to reflect high temperatures and pressures of melting and possibly high water contents in such peridotite sources. We recommend considerable caution when using Ni and Mn contents of olivine as source indicators, as they may only serve for qualitative comparison of primitive volcanic rocks that originated under fairly similar mantle conditions.
  • Nikkola, Paavo; Gudfinnsson, Gudmundur H.; Bali, Eniko; Ramo, O. Tapani; Fusswinkel, Tobias; Thordarson, Thorvaldur (2019)
    We present new high-precision major and trace element data on olivine macrocrysts from various volcano-tectonic settings in Iceland and use these data as a proxy for mantle mode and melting conditions. Within individual sampling sites examined (seven lavas and one tephra) olivine-dominated fractional crystallization, magma mixing and diffusive re-equilibration control observed variability in olivine composition. High-pressure fractional crystallization of clinopyroxene may have lowered Ca and increased Fe/Mn in one olivine population and subsolidus diffusion of Ni and Fe-Mg affected the mantle-derived Ni/Fo ratio in some compositionally zoned olivine macrocrysts. Interestingly, magmas erupted at the southern tip of the Eastern Volcanic Zone (SEVZ), South Iceland, have olivines with elevated Ni and low Mn and Ca contents compared to olivines from elsewhere in Iceland, and some of the SEVZ olivines have relatively low Sc and V and high Cr, Ti, Zn, Cu and Li in comparison to depleted Iceland rift tholeiite. In these olivines, the high Ni and low Mn indicate relatively deep melting (P-final>1.4GPa,similar to 45km), Sc, Ti and V are compatible with low-degree melts of lherzolite mantle, and elevated Zn may suggest modal (low-olivine) or geochemical (high Zn) enrichment in the source. The SEVZ olivine macrocrysts probably crystallized from magmas derived from olivine-bearing but relatively deep, enriched and fertile parts of the sub-Icelandic mantle, and indicate swift ascent of magma through the SEVZ lithosphere.
  • Kohout, T.; Čuda, J.; Filip, J.; Britt, D.; Bradley, T.; Tuček, J.; Skála, R.; Kletetschka, G.; Kašlík, J.; Malina, O.; Šišková, K.; Zbořil, R. (2014)
    Airless planetary bodies are directly exposed to space weathering. The main spectral effects of space weathering are darkening, reduction in intensity of silicate mineral absorption bands, and an increase in the spectral slope towards longer wavelengths (reddening). Production of nanophase metallic iron (npFe0) during space weathering plays major role in these spectral changes. A laboratory procedure for the controlled production of npFe0 in silicate mineral powders has been developed. The method is based on a two-step thermal treatment of low-iron olivine, first in ambient air and then in hydrogen atmosphere. Through this process, a series of olivine powder samples was prepared with varying amounts of npFe0 in the 7-20 nm size range. A logarithmic trend is observed between amount of npFe0 and darkening, reduction of 1 µm olivine absorption band, reddening, and 1 µm band width. Olivine with a population of physically larger npFe0 particles follows spectral trends similar to other samples, except for the reddening trend. This is interpreted as the larger, ~40-50 nm sized, npFe0 particles do not contribute to the spectral slope change as efficiently as the smaller npFe0 fraction. A linear trend is observed between the amount of npFe0 and 1 µm band center position, most likely caused by Fe2+ disassociation from olivine structure into npFe0 particles.